IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p226-d90391.html
   My bibliography  Save this article

A Heuristic Diagnostic Method for a PV System: Triple-Layered Particle Swarm Optimization–Back-Propagation Neural Network

Author

Listed:
  • Zhenghai Liao

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Dazheng Wang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Liangliang Tang

    (College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)

  • Jinli Ren

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Zhuming Liu

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

This paper proposes a heuristic triple layered particle swarm optimization–back-propagation (PSO-BP) neural network method for improving the convergence and prediction accuracy of the fault diagnosis system of the photovoltaic (PV) array. The parameters, open-circuit voltage (V oc ), short-circuit current (I sc ), maximum power (P m ) and voltage at maximum power point (V m ) are extracted from the output curve of the PV array as identification parameters for the fault diagnosis system. This study compares performances of two methods, the back-propagation neural network method, which is widely used, and the heuristic method with MATLAB. In the training phase, the back-propagation method takes about 425 steps to convergence, while the heuristic method needs only 312 steps. In the fault diagnosis phase, the prediction accuracy of the heuristic method is 93.33%, while the back-propagation method scores 86.67%. It is concluded that the heuristic method can not only improve the convergence of the simulation but also significantly improve the prediction accuracy of the fault diagnosis system.

Suggested Citation

  • Zhenghai Liao & Dazheng Wang & Liangliang Tang & Jinli Ren & Zhuming Liu, 2017. "A Heuristic Diagnostic Method for a PV System: Triple-Layered Particle Swarm Optimization–Back-Propagation Neural Network," Energies, MDPI, vol. 10(2), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:226-:d:90391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaushika, N.D. & Rai, Anil K., 2007. "An investigation of mismatch losses in solar photovoltaic cell networks," Energy, Elsevier, vol. 32(5), pages 755-759.
    2. Jinying Li & Jianfeng Shi & Jinchao Li, 2016. "Exploring Reduction Potential of Carbon Intensity Based on Back Propagation Neural Network and Scenario Analysis: A Case of Beijing, China," Energies, MDPI, vol. 9(8), pages 1-17, August.
    3. Abdullahi Abubakar Mas’ud & Ricardo Albarracín & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki & Hazlee Azil Illias & Nurul Aini Bani & Abu Bakar Munir, 2016. "Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions," Energies, MDPI, vol. 9(8), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    2. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    3. Ana C. N. Pardauil & Thiago P. Nascimento & Marcelo R. S. Siqueira & Ubiratan H. Bezerra & Werbeston D. Oliveira, 2020. "Combined Approach Using Clustering-Random Forest to Evaluate Partial Discharge Patterns in Hydro Generators," Energies, MDPI, vol. 13(22), pages 1-18, November.
    4. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    5. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    6. Jeong Eun Park & Won Seok Choi & Dong Gun Lim, 2021. "Multi-Wire Interconnection of Busbarless Solar Cells with Embedded Electrode Sheet," Energies, MDPI, vol. 14(13), pages 1-19, July.
    7. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    8. Yue, Gentian & Wu, Jihuai & Xiao, Yaoming & Lin, Jianming & Huang, Miaoliang & Lan, Zhang & Fan, Leqing, 2013. "Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells," Energy, Elsevier, vol. 54(C), pages 315-321.
    9. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    10. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    11. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    12. Kurt Michael Coetzer & Arnold Johan Rix & Pieter Gideon Wiid, 2022. "The Measurement and SPICE Modelling of Schottky Barrier Diodes Appropriate for Use as Bypass Diodes within Photovoltaic Modules," Energies, MDPI, vol. 15(13), pages 1-30, June.
    13. Ju Tang & Xu Yang & Dong Yang & Qiang Yao & Yulong Miao & Chaohai Zhang & Fuping Zeng, 2017. "Using SF 6 Decomposed Component Analysis for the Diagnosis of Partial Discharge Severity Initiated by Free Metal Particle Defect," Energies, MDPI, vol. 10(8), pages 1-17, August.
    14. Potnuru, Srinivasa Rao & Pattabiraman, Dinesh & Ganesan, Saravana Ilango & Chilakapati, Nagamani, 2015. "Positioning of PV panels for reduction in line losses and mismatch losses in PV array," Renewable Energy, Elsevier, vol. 78(C), pages 264-275.
    15. Huiru Zhao & Guo Huang & Ning Yan, 2018. "Forecasting Energy-Related CO 2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China," Energies, MDPI, vol. 11(4), pages 1-21, March.
    16. Ju Tang & Xu Yang & Gaoxiang Ye & Qiang Yao & Yulong Miao & Fuping Zeng, 2017. "Decomposition Characteristics of SF 6 and Partial Discharge Recognition under Negative DC Conditions," Energies, MDPI, vol. 10(4), pages 1-16, April.
    17. Mariem Hadj Salem & Karim Mansouri & Eric Chauveau & Yemna Ben Salem & Mohamed Naceur Abdelkrim, 2024. "Multi-Power System Electrical Source Fault Review," Energies, MDPI, vol. 17(5), pages 1-27, March.
    18. Zhang, Xiaoshun & Meng, Die & Cai, Jiahui & Zhang, Guiyuan & Yu, Tao & Pan, Feng & Yang, Yuyao, 2023. "A swarm based double Q-learning for optimal PV array reconfiguration with a coordinated control of hydrogen energy storage system," Energy, Elsevier, vol. 266(C).
    19. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    20. Pruethsan Sutthichaimethee & Kuskana Kubaha, 2018. "A Relational Analysis Model of the Causal Factors Influencing CO 2 in Thailand’s Industrial Sector under a Sustainability Policy Adapting the VARIMAX-ECM Model," Energies, MDPI, vol. 11(7), pages 1-16, July.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:226-:d:90391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.