IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p103-d87942.html
   My bibliography  Save this article

A Performance Prediction Method for Pumps as Turbines (PAT) Using a Computational Fluid Dynamics (CFD) Modeling Approach

Author

Listed:
  • Emma Frosina

    (Department of Industrial Engineering, University of Naples Federico II, Via Claudio, 21-80125 Naples, Italy)

  • Dario Buono

    (Department of Industrial Engineering, University of Naples Federico II, Via Claudio, 21-80125 Naples, Italy)

  • Adolfo Senatore

    (Department of Industrial Engineering, University of Naples Federico II, Via Claudio, 21-80125 Naples, Italy)

Abstract

Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT) approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD) software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.

Suggested Citation

  • Emma Frosina & Dario Buono & Adolfo Senatore, 2017. "A Performance Prediction Method for Pumps as Turbines (PAT) Using a Computational Fluid Dynamics (CFD) Modeling Approach," Energies, MDPI, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:103-:d:87942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nautiyal, Himanshu & Varun & Kumar, Anoop, 2010. "Reverse running pumps analytical, experimental and computational study: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2059-2067, September.
    2. Armando Carravetta & Giuseppe Del Giudice & Oreste Fecarotta & Helena M. Ramos, 2013. "PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation," Energies, MDPI, vol. 6(1), pages 1-14, January.
    3. Pugliese, Francesco & De Paola, Francesco & Fontana, Nicola & Giugni, Maurizio & Marini, Gustavo, 2016. "Experimental characterization of two Pumps As Turbines for hydropower generation," Renewable Energy, Elsevier, vol. 99(C), pages 180-187.
    4. Mauro De Marchis & Barbara Milici & Roberto Volpe & Antonio Messineo, 2016. "Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis," Energies, MDPI, vol. 9(11), pages 1-15, October.
    5. Barbarelli, S. & Amelio, M. & Florio, G., 2016. "Predictive model estimating the performances of centrifugal pumps used as turbines," Energy, Elsevier, vol. 107(C), pages 103-121.
    6. Su, Xianghui & Huang, Si & Zhang, Xuejiao & Yang, Sunsheng, 2016. "Numerical research on unsteady flow rate characteristics of pump as turbine," Renewable Energy, Elsevier, vol. 94(C), pages 488-495.
    7. Arriaga, Mariano, 2010. "Pump as turbine – A pico-hydro alternative in Lao People's Democratic Republic," Renewable Energy, Elsevier, vol. 35(5), pages 1109-1115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana Simão & Modesto Pérez-Sánchez & Armando Carravetta & Helena M. Ramos, 2019. "Flow Conditions for PATs Operating in Parallel: Experimental and Numerical Analyses," Energies, MDPI, vol. 12(5), pages 1-19, March.
    2. Qi, Bing & Zhang, Desheng & Geng, Linlin & Zhao, Ruijie & van Esch, Bart P.M., 2022. "Numerical and experimental investigations on inflow loss in the energy recovery turbines with back-curved and front-curved impeller based on the entropy generation theory," Energy, Elsevier, vol. 239(PE).
    3. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    4. Balacco, Gabriella & Fiorese, Gaetano Daniele & Alfio, Maria Rosaria & Totaro, Vincenzo & Binetti, Mario & Torresi, Marco & Stefanizzi, Michele, 2023. "PaT-ID: A tool for the selection of the optimal pump as turbine for a water distribution network," Energy, Elsevier, vol. 282(C).
    5. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    6. Mario Amelio & Silvio Barbarelli & Domenico Schinello, 2020. "Review of Methods Used for Selecting Pumps as Turbines (PATs) and Predicting Their Characteristic Curves," Energies, MDPI, vol. 13(23), pages 1-20, December.
    7. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2018. "Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs)," Energies, MDPI, vol. 11(4), pages 1-17, April.
    8. Xiuli Mao & Andrea Dal Monte & Ernesto Benini & Yuan Zheng, 2017. "Numerical Study on the Internal Flow Field of a Reversible Turbine during Continuous Guide Vane Closing," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. Zeyad Al-Suhaibani & Syed Noman Danish & Ziyad Saleh Al-Khalaf & Basharat Salim, 2023. "Improved Prediction Model and Utilization of Pump as Turbine for Excess Power Saving from Large Pumping System in Saudi Arabia," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    10. Le Marre, Maël & Mandin, Philippe & Lanoisellé, Jean-Louis & Zilliox, Erik & Rammal, Farah & Kim, Myeongsub (Mike) & Inguanta, Rosalinda, 2022. "Pumps as turbines regulation study through a decision-support algorithm," Renewable Energy, Elsevier, vol. 194(C), pages 561-570.
    11. Bjørn H. Hjertager, 2017. "Engineering Fluid Dynamics," Energies, MDPI, vol. 10(10), pages 1-2, September.
    12. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    13. Emma Frosina & Adolfo Senatore & Assunta Andreozzi & Francesco Fortunato & Pino Giliberti, 2018. "Experimental and Numerical Analyses of the Sloshing in a Fuel Tank," Energies, MDPI, vol. 11(3), pages 1-24, March.
    14. Martin Polák, 2021. "Innovation of Pump as Turbine According to Calculation Model for Francis Turbine Design," Energies, MDPI, vol. 14(9), pages 1-13, May.
    15. Maxime Binama & Kan Kan & Huixiang Chen & Yuan Zheng & Daqing Zhou & Alexis Muhirwa & Godfrey M. Bwimba, 2021. "Investigation into Pump Mode Flow Dynamics for a Mixed Flow PAT with Adjustable Runner Blades," Energies, MDPI, vol. 14(9), pages 1-28, May.
    16. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    17. Wang, Tao & Xiang, Ru & Yu, He & Zhou, Min, 2023. "Performance improvement of forward-curved impeller with an adequate outlet swirl using in centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 204(C), pages 67-76.
    18. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    19. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    20. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.
    21. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    22. Xuanlin Peng & Jianzhong Zhou & Chu Zhang & Ruhai Li & Yanhe Xu & Diyi Chen, 2017. "An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine," Energies, MDPI, vol. 10(11), pages 1-17, November.
    23. Abdulbasit Nasir & Edessa Dribssa & Misrak Girma & Habtamu Bayera Madessa, 2023. "Selection and Performance Prediction of a Pump as a Turbine for Power Generation Applications," Energies, MDPI, vol. 16(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    2. Venturini, Mauro & Manservigi, Lucrezia & Alvisi, Stefano & Simani, Silvio, 2018. "Development of a physics-based model to predict the performance of pumps as turbines," Applied Energy, Elsevier, vol. 231(C), pages 343-354.
    3. Huang, Si & Qiu, Guangqi & Su, Xianghui & Chen, Junrong & Zou, Wenlang, 2017. "Performance prediction of a centrifugal pump as turbine using rotor-volute matching principle," Renewable Energy, Elsevier, vol. 108(C), pages 64-71.
    4. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).
    5. Wang, Tao & Kong, Fanyu & Xia, Bin & Bai, Yuxing & Wang, Chuan, 2017. "The method for determining blade inlet angle of special impeller using in turbine mode of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 109(C), pages 518-528.
    6. Stefanizzi, M. & Filannino, D. & Capurso, T. & Camporeale, S.M. & Torresi, M., 2023. "Optimal hydraulic energy harvesting strategy for PaT installation in Water Distribution Networks," Applied Energy, Elsevier, vol. 344(C).
    7. Binama, Maxime & Su, Wen-Tao & Li, Xiao-Bin & Li, Feng-Chen & Wei, Xian-Zhu & An, Shi, 2017. "Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 148-179.
    8. Wang, Tao & Wang, Chuan & Kong, Fanyu & Gou, Qiuqin & Yang, Sunsheng, 2017. "Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine," Energy, Elsevier, vol. 130(C), pages 473-485.
    9. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    10. Carravetta, A. & Fecarotta, O. & Ramos, H.M., 2018. "A new low-cost installation scheme of PATs for pico-hydropower to recover energy in residential areas," Renewable Energy, Elsevier, vol. 125(C), pages 1003-1014.
    11. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    12. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2018. "Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs)," Energies, MDPI, vol. 11(4), pages 1-17, April.
    13. Tahani, Mojtaba & Kandi, Ali & Moghimi, Mahdi & Houreh, Shahram Derakhshan, 2020. "Rotational speed variation assessment of centrifugal pump-as-turbine as an energy utilization device under water distribution network condition," Energy, Elsevier, vol. 213(C).
    14. Davi Edson Sales Souza & André Luiz Amarante Mesquita & Claudio José Cavalcante Blanco, 2023. "Pressure Regulation in a Water Distribution Network Using Pumps as Turbines at Variable Speed for Energy Recovery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1183-1206, February.
    15. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    16. Pugliese, Francesco & Fontana, Nicola & Marini, Gustavo & Giugni, Maurizio, 2021. "Experimental assessment of the impact of number of stages on vertical axis multi-stage centrifugal PATs," Renewable Energy, Elsevier, vol. 178(C), pages 891-903.
    17. Mauro Venturini & Stefano Alvisi & Silvio Simani & Lucrezia Manservigi, 2017. "Energy Production by Means of Pumps As Turbines in Water Distribution Networks," Energies, MDPI, vol. 10(10), pages 1-13, October.
    18. Oreste Fecarotta & Aonghus McNabola, 2017. "Optimal Location of Pump as Turbines (PATs) in Water Distribution Networks to Recover Energy and Reduce Leakage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 5043-5059, December.
    19. Martin Polák, 2019. "The Influence of Changing Hydropower Potential on Performance Parameters of Pumps in Turbine Mode," Energies, MDPI, vol. 12(11), pages 1-12, June.
    20. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:103-:d:87942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.