IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1828-d118416.html
   My bibliography  Save this article

Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

Author

Listed:
  • Zhongchao Zhao

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 210000, China)

  • Kai Zhao

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 210000, China)

  • Dandan Jia

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 210000, China)

  • Pengpeng Jiang

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 210000, China)

  • Rendong Shen

    (School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 210000, China)

Abstract

As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE) is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG) vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG) as working fluid. The thermal properties of supercritical LNG were tested by utilizing the REFPROF software database. Numerical simulations were performed using FLUENT. The inlet temperature of supercritical LNG was 121 K, and its pressure was 10.5 MPa. The reference mass flow rate of LNG was set as 1.22 g/s for the vertical pitch L v = 1.67 mm and the staggered pitch L s = 0 mm, with the Reynolds number of about 3750. The SST k-ω model was selected and verified by comparing with the experimental data using supercritical liquid nitrogen as cold fluid. The airfoil fin PCHE had better thermal-hydraulic performance than that of the straight channel PCHE. Moreover, the airfoil fins with staggered arrangement displayed better thermal performance than that of the fins with parallel arrangement. The thermal-hydraulic performance of airfoil fin PCHE was improved with increasing L s and L v . Moreover, L v affected the Nusselt number and pressure drop of airfoil fin PCHE more obviously. In conclusion, a sparser staggered arrangement of fins showed a better thermal-hydraulic performance in airfoil fin PCHE.

Suggested Citation

  • Zhongchao Zhao & Kai Zhao & Dandan Jia & Pengpeng Jiang & Rendong Shen, 2017. "Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger," Energies, MDPI, vol. 10(11), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1828-:d:118416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Shanshan & Jiao, Wenling & Wang, Haichao, 2016. "Three-dimensional numerical analysis of the coupled heat transfer performance of LNG ambient air vaporizer," Renewable Energy, Elsevier, vol. 87(P3), pages 1105-1112.
    2. Yousefi, Amin & Birouk, Madjid, 2017. "Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load," Applied Energy, Elsevier, vol. 189(C), pages 492-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Lei & Yuting Zhao & Wukai Chen & Huiling Li & Xinyu Wang & Jingzhi Zhang, 2021. "Experimental Studies of Droplet Formation Process and Length for Liquid–Liquid Two-Phase Flows in a Microchannel," Energies, MDPI, vol. 14(5), pages 1-17, March.
    2. Zhongchao Zhao & Yimeng Zhou & Xiaolong Ma & Xudong Chen & Shilin Li & Shan Yang, 2019. "Effect of Different Zigzag Channel Shapes of PCHEs on Heat Transfer Performance of Supercritical LNG," Energies, MDPI, vol. 12(11), pages 1-15, May.
    3. Zhongchao Zhao & Yimeng Zhou & Xiaolong Ma & Xudong Chen & Shilin Li & Shan Yang, 2019. "Numerical Study on Thermal Hydraulic Performance of Supercritical LNG in Zigzag-Type Channel PCHEs," Energies, MDPI, vol. 12(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    2. Hammam Aljabri & Mickael Silva & Moez Ben Houidi & Xinlei Liu & Moaz Allehaibi & Fahad Almatrafi & Abdullah S. AlRamadan & Balaji Mohan & Emre Cenker & Hong G. Im, 2022. "Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach," Energies, MDPI, vol. 15(23), pages 1-21, November.
    3. Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
    4. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    5. Hoang, Anh Tuan & Murugesan, Parthasarathy & PV, Elumalai & Balasubramanian, Dhinesh & Parida, Satyajeet & Priya Jayabal, Chandra & Nachippan, Murugu & Kalam, M.A & Truong, Thanh Hai & Cao, Dao Nam & , 2023. "Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model," Energy, Elsevier, vol. 280(C).
    6. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    7. Rafał Ślefarski & Michał Gołębiewski & Paweł Czyżewski & Przemysław Grzymisławski & Jacek Wawrzyniak, 2018. "Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System," Energies, MDPI, vol. 11(2), pages 1-15, February.
    8. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    9. Tavakoli, Sadi & Saettone, Simone & Steen, Sverre & Andersen, Poul & Schramm, Jesper & Pedersen, Eilif, 2020. "Modeling and analysis of performance and emissions of marine lean-burn natural gas engine propulsion in waves," Applied Energy, Elsevier, vol. 279(C).
    10. Jadav, Chirag & Chowdhury, Kanchan, 2021. "Minimizing weight of ambient air vaporizer by using identical and different number of fins along the length," Renewable Energy, Elsevier, vol. 163(C), pages 398-413.
    11. Dai, Rui & Tian, Ran & Zheng, Siyu & Wei, Mingshan & Shi, GuoHua, 2022. "Dynamic performance evaluation of LNG vaporization system integrated with solar-assisted heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 561-572.
    12. Wang, Zhe & Cai, Wenjian & Han, Fenghui & Ji, Yulong & Li, Wenhua & Sundén, Bengt, 2019. "Feasibility study on a novel heat exchanger network for cryogenic liquid regasification with cooling capacity recovery: Theoretical and experimental assessments," Energy, Elsevier, vol. 181(C), pages 771-781.
    13. Yousefi, Amin & Guo, Hongsheng & Birouk, Madjid, 2018. "Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions," Applied Energy, Elsevier, vol. 229(C), pages 375-388.
    14. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    15. Benbellil, Messaoud Abdelalli & Lounici, Mohand Said & Loubar, Khaled & Tazerout, Mohand, 2022. "Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine," Energy, Elsevier, vol. 243(C).
    16. Ge, Minghui & Li, Zhenhua & Wang, Yeting & Zhao, Yulong & Zhu, Yu & Wang, Shixue & Liu, Liansheng, 2021. "Experimental study on thermoelectric power generation based on cryogenic liquid cold energy," Energy, Elsevier, vol. 220(C).
    17. Abhinandhan Narayanan & Deivanayagam Hariharan & Kendyl Ryan Partridge & Austin Leo Pearson & Kalyan Kumar Srinivasan & Sundar Rajan Krishnan, 2023. "Impact of Low Reactivity Fuel Type and Energy Substitution on Dual Fuel Combustion at Different Injection Timings," Energies, MDPI, vol. 16(4), pages 1-36, February.
    18. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    19. Di Blasio, G. & Belgiorno, G. & Beatrice, C., 2017. "Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio," Applied Energy, Elsevier, vol. 204(C), pages 726-740.
    20. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1828-:d:118416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.