IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1767-d117368.html
   My bibliography  Save this article

Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

Author

Listed:
  • Huaiyu Shao

    (Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Macau SAR, China
    International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan)

Abstract

Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC) systems combined with MgH 2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH 2 materials. The net efficiency of this model achieves 82% lower heating value (LHV), and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg 50 Co 50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH 2 -SOFC combined concept.

Suggested Citation

  • Huaiyu Shao, 2017. "Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage," Energies, MDPI, vol. 10(11), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1767-:d:117368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimiliano Cimenti & Josephine M. Hill, 2009. "Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes," Energies, MDPI, vol. 2(2), pages 1-34, June.
    2. Sadhasivam, T. & Kim, Hee-Tak & Jung, Seunghun & Roh, Sung-Hee & Park, Jeong-Hun & Jung, Ho-Young, 2017. "Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 523-534.
    3. Abid Rabbani & Masoud Rokni, 2014. "Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems," Energies, MDPI, vol. 7(9), pages 1-21, August.
    4. Xuan-Vien Nguyen & Chang-Tsair Chang & Guo-Bin Jung & Shih-Hung Chan & Wilson Chao-Wei Huang & Kai-Jung Hsiao & Win-Tai Lee & Shu-Wei Chang & I-Cheng Kao, 2016. "Effect of Sintering Temperature and Applied Load on Anode-Supported Electrodes for SOFC Application," Energies, MDPI, vol. 9(9), pages 1-13, August.
    5. Liuzhang Ouyang & Miaolian Ma & Minghong Huang & Ruoming Duan & Hui Wang & Lixian Sun & Min Zhu, 2015. "Enhanced Hydrogen Generation Properties of MgH 2 -Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer," Energies, MDPI, vol. 8(5), pages 1-16, May.
    6. Chaoqi Shen & Kondo-Francois Aguey-Zinsou, 2016. "Electrodeposited Magnesium Nanoparticles Linking Particle Size to Activation Energy," Energies, MDPI, vol. 9(12), pages 1-12, December.
    7. Rokni, Masoud, 2010. "Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle," Energy, Elsevier, vol. 35(12), pages 4691-4699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sera Ayten Cetinkaya & Tacettin Disli & Gamze Soyturk & Onder Kizilkan & C. Ozgur Colpan, 2022. "A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers," Energies, MDPI, vol. 16(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    2. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    3. Bellomare, Filippo & Rokni, Masoud, 2013. "Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine," Renewable Energy, Elsevier, vol. 55(C), pages 490-500.
    4. Yuanwu Xu & Hao Shu & Hongchuan Qin & Xiaolong Wu & Jingxuan Peng & Chang Jiang & Zhiping Xia & Yongan Wang & Xi Li, 2022. "Real-Time State of Health Estimation for Solid Oxide Fuel Cells Based on Unscented Kalman Filter," Energies, MDPI, vol. 15(7), pages 1-17, March.
    5. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Alexander Vadimovich Pechenkin & Artem Sergeevich Vinogradov, 2023. "Theoretical and Experimental Studies of Combined Heat and Power Systems with SOFCs," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Craig M. Jensen & Etsuo Akiba & Hai-Wen Li, 2016. "Hydrides: Fundamentals and Applications," Energies, MDPI, vol. 9(4), pages 1-2, April.
    7. Harun, Nor Farida & Tucker, David & Adams, Thomas A., 2016. "Impact of fuel composition transients on SOFC performance in gas turbine hybrid systems," Applied Energy, Elsevier, vol. 164(C), pages 446-461.
    8. Nguyen, Xuan-Vien & Chang, Chang-Tsair & Jung, Guo-Bin & Chan, Shih-Hung & Yeh, Chia-Chen & Yu, Jyun-Wei & Lee, Chi-Yuan, 2018. "Improvement on the design and fabrication of planar SOFCs with anode–supported cells based on modified button cells," Renewable Energy, Elsevier, vol. 129(PB), pages 806-813.
    9. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    10. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Xu, Qidong & Xia, Lingchao & He, Qijiao & Guo, Zengjia & Ni, Meng, 2021. "Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells," Applied Energy, Elsevier, vol. 291(C).
    12. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    13. Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
    14. Omar Mounkachi & Asmae Akrouchi & Ghassane Tiouitchi & Marwan Lakhal & Elmehdi Salmani & Abdelilah Benyoussef & Abdelkader Kara & Abdellah El Kenz & Hamid Ez-Zahraouy & Amine El Moutaouakil, 2021. "Stability, Electronic Structure and Thermodynamic Properties of Nanostructured MgH 2 Thin Films," Energies, MDPI, vol. 14(22), pages 1-10, November.
    15. Thieu, Cam-Anh & Ji, Ho-Il & Kim, Hyoungchul & Yoon, Kyung Joong & Lee, Jong-Ho & Son, Ji-Won, 2019. "Palladium incorporation at the anode of thin-film solid oxide fuel cells and its effect on direct utilization of butane fuel at 600 °C," Applied Energy, Elsevier, vol. 243(C), pages 155-164.
    16. Wang, Peng & Wang, Zexuan & Tian, Zhihui & Xia, Chaoqun & Yang, Tai & Liang, Chunyong & Li, Qiang, 2020. "Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: The catalytic effect of in-situ formed MgS and Mg2NiH4 phases," Renewable Energy, Elsevier, vol. 160(C), pages 409-417.
    17. Denis A. Osinkin & Ekaterina P. Antonova & Alena S. Lesnichyova & Evgeniy S. Tropin & Mikhail E. Chernov & Efim I. Chernov & Andrey S. Farlenkov & Anna V. Khodimchuk & Vadim A. Eremin & Anastasia I. K, 2020. "Application of Promising Electrode Materials in Contact with a Thin-Layer ZrO 2 -Based Supporting Electrolyte for Solid Oxide Fuel Cells," Energies, MDPI, vol. 13(5), pages 1-12, March.
    18. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Abid Rabbani & Masoud Rokni, 2014. "Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems," Energies, MDPI, vol. 7(9), pages 1-21, August.
    20. Shaikh, Shabana P.S. & Muchtar, Andanastuti & Somalu, Mahendra R., 2015. "A review on the selection of anode materials for solid-oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1767-:d:117368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.