IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1708-d116496.html
   My bibliography  Save this article

Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

Author

Listed:
  • Jorge Nájera

    (Department of Electrical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

  • Pablo Moreno-Torres

    (Wynnertech S.L., 28906 Madrid, Spain)

  • Marcos Lafoz

    (CIEMAT, Government of Spain, 28040 Madrid, Spain)

  • Rosa M. De Castro

    (Department of Electrical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

  • Jaime R. Arribas

    (Department of Electrical Engineering, E.T.S.I. Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain)

Abstract

This paper focuses on Hybrid Energy Storage Systems (HESS), consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC), for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries), an EDLC pack, up to two DC-DC converters (depending on the topology), and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia). Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging) and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass), using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

Suggested Citation

  • Jorge Nájera & Pablo Moreno-Torres & Marcos Lafoz & Rosa M. De Castro & Jaime R. Arribas, 2017. "Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging," Energies, MDPI, vol. 10(11), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1708-:d:116496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Guizhou & Ma, Guoqing & Cong, Ning, 2015. "Review of electrical energy storage system for vehicular applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 225-236.
    2. Evangelos G. Giakoumis & Alexandros T. Zachiotis, 2017. "Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC," Energies, MDPI, vol. 10(2), pages 1-19, February.
    3. Fang Zhou & Feng Xiao & Cheng Chang & Yulong Shao & Chuanxue Song, 2017. "Adaptive Model Predictive Control-Based Energy Management for Semi-Active Hybrid Energy Storage Systems on Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-21, July.
    4. Eliana Arango & Carlos Andres Ramos-Paja & Javier Calvente & Roberto Giral & Sergio Serna, 2012. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design," Energies, MDPI, vol. 5(11), pages 1-34, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Steger & Jonathan Krogh & Lasantha Meegahapola & Hans-Georg Schweiger, 2022. "Calculating Available Charge and Energy of Lithium-Ion Cells Based on OCV and Internal Resistance," Energies, MDPI, vol. 15(21), pages 1-23, October.
    2. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    3. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    4. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    5. Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
    6. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Zeeshan Malik & Haoyong Chen & Muhammad Shahzad Nazir & Irfan Ahmad Khan & Ahmed N. Abdalla & Amjad Ali & Wan Chen, 2020. "A New Efficient Step-Up Boost Converter with CLD Cell for Electric Vehicle and New Energy Systems," Energies, MDPI, vol. 13(7), pages 1-14, April.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    4. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    6. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    7. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    8. Eliana Arango & Carlos Andres Ramos-Paja & Javier Calvente & Roberto Giral & Sergio Ignacio Serna-Garces, 2013. "Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 2: Control-Oriented Models," Energies, MDPI, vol. 6(10), pages 1-27, October.
    9. Pirjola, Liisa & Kuuluvainen, Heino & Timonen, Hilkka & Saarikoski, Sanna & Teinilä, Kimmo & Salo, Laura & Datta, Arindam & Simonen, Pauli & Karjalainen, Panu & Kulmala, Kari & Rönkkö, Topi, 2019. "Potential of renewable fuel to reduce diesel exhaust particle emissions," Applied Energy, Elsevier, vol. 254(C).
    10. M׳boungui, G. & Adendorff, K. & Naidoo, R. & Jimoh, A.A. & Okojie, D.E., 2015. "A hybrid piezoelectric micro-power generator for use in low power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1136-1144.
    11. Juan-Guillermo Muñoz & Guillermo Gallo & Fabiola Angulo & Gustavo Osorio, 2018. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    13. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    14. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    15. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    16. Yanzi Wang & Weida Wang & Yulong Zhao & Lei Yang & Wenjun Chen, 2016. "A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems," Energies, MDPI, vol. 9(1), pages 1-20, January.
    17. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    18. Datas, Alejandro & Ramos, Alba & Martí, Antonio & del Cañizo, Carlos & Luque, Antonio, 2016. "Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion," Energy, Elsevier, vol. 107(C), pages 542-549.
    19. Evangelos G. Giakoumis, 2017. "Diesel and Spark Ignition Engines Emissions and After-Treatment Control: Research and Advancements," Energies, MDPI, vol. 10(11), pages 1-4, November.
    20. Ching-Ming Lai & Ming-Ji Yang & Shih-Kun Liang, 2014. "A Zero Input Current Ripple ZVS/ZCS Boost Converter with Boundary-Mode Control," Energies, MDPI, vol. 7(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1708-:d:116496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.