IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v7y2025i1p23-d1607878.html
   My bibliography  Save this article

Multi-Criteria Optimization of a Hybrid Renewable Energy System Using Particle Swarm Optimization for Optimal Sizing and Performance Evaluation

Author

Listed:
  • Shree Om Bade

    (Department of Energy Engineering, University of North Dakota, Grand Forks, ND 58202, USA)

  • Olusegun Stanley Tomomewo

    (Department of Energy Engineering, University of North Dakota, Grand Forks, ND 58202, USA)

  • Ajan Meenakshisundaram

    (Department of Energy Engineering, University of North Dakota, Grand Forks, ND 58202, USA)

  • Maharshi Dey

    (UbiQD Inc., Los Alamos, NM 87544, USA)

  • Moones Alamooti

    (Department of Energy Engineering, University of North Dakota, Grand Forks, ND 58202, USA)

  • Nabil Halwany

    (Huawei Technologies, 2450 Copenhagen, Denmark)

Abstract

The major challenges in designing a Hybrid Renewable Energy System (HRES) include selecting appropriate renewable energy sources and storage systems, accurately sizing each component, and defining suitable optimization criteria. This study addresses these challenges by employing Particle Swarm Optimization (PSO) within a multi-criteria optimization framework to design an HRES in Kern County, USA. The proposed system integrates wind turbines (WTS), photovoltaic (PV) panels, Biomass Gasifiers (BMGs), batteries, electrolyzers (ELs), and fuel cells (FCs), aiming to minimize Annual System Cost (ASC), minimize Loss of Power Supply Probability (LPSP), and maximize renewable energy fraction (REF). Results demonstrate that the PSO-optimized system achieves an ASC of USD6,336,303, an LPSP of 0.01%, and a REF of 90.01%, all of which are reached after 25 iterations. When compared to the Genetic Algorithm (GA) and hybrid GA-PSO, PSO improved cost-effectiveness by 3.4% over GA and reduced ASC by 1.09% compared to GAPSO. In terms of REF, PSO outperformed GA by 1.22% and GAPSO by 0.99%. The PSO-optimized configuration includes WT (4669 kW), solar PV (10,623 kW), BMG (2174 kW), battery (8000 kWh), FC (2305 kW), and EL (6806 kW). Sensitivity analysis highlights the flexibility of the optimization framework under varying weight distributions. These results highlight the dependability, cost-effectiveness, and sustainability for the proposed system, offering valuable insights for policymakers and practitioners transitioning to renewable energy systems.

Suggested Citation

  • Shree Om Bade & Olusegun Stanley Tomomewo & Ajan Meenakshisundaram & Maharshi Dey & Moones Alamooti & Nabil Halwany, 2025. "Multi-Criteria Optimization of a Hybrid Renewable Energy System Using Particle Swarm Optimization for Optimal Sizing and Performance Evaluation," Clean Technol., MDPI, vol. 7(1), pages 1-31, March.
  • Handle: RePEc:gam:jcltec:v:7:y:2025:i:1:p:23-:d:1607878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/7/1/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/7/1/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eriksson, E.L.V. & Gray, E.MacA., 2019. "Optimization of renewable hybrid energy systems – A multi-objective approach," Renewable Energy, Elsevier, vol. 133(C), pages 971-999.
    2. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    3. Sun, Hongyue & Ebadi, Abdol Ghaffar & Toughani, Mohsen & Nowdeh, Saber Arabi & Naderipour, Amirreza & Abdullah, Aldrin, 2022. "Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm," Energy, Elsevier, vol. 238(PA).
    4. Kelvin Nkalo Ukoima & Ogbonnaya Inya Okoro & Patrick Ifeanyi Obi & Udochukwu Bola Akuru & Innocent Ewean Davidson, 2024. "Optimal Sizing, Energy Balance, Load Management and Performance Analysis of a Hybrid Renewable Energy System," Energies, MDPI, vol. 17(21), pages 1-21, October.
    5. Yousef Alhumaid & Khalid Khan & Fahad Alismail & Muhammad Khalid, 2021. "Multi-Input Nonlinear Programming Based Deterministic Optimization Framework for Evaluating Microgrids with Optimal Renewable-Storage Energy Mix," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    2. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    3. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    4. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    5. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    6. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    7. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    8. Shuxin Liu & Jing Xu & Chaojian Xing & Yang Liu & Ersheng Tian & Jia Cui & Junzhu Wei, 2023. "Study on Dynamic Pricing Strategy for Industrial Power Users Considering Demand Response Differences in Master–Slave Game," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    9. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    10. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    11. Saman Shahrokhi & Adel El-Shahat & Fatemeh Masoudinia & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Sizing and Energy Management of Parking Lots of Electric Vehicles Based on Battery Storage with Wind Resources in Distribution Network," Energies, MDPI, vol. 14(20), pages 1-21, October.
    12. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    13. Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).
    14. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    15. Mohammed Qasim Taha & Sefer Kurnaz, 2023. "Droop Control Optimization for Improved Power Sharing in AC Islanded Microgrids Based on Centripetal Force Gravity Search Algorithm," Energies, MDPI, vol. 16(24), pages 1-20, December.
    16. Fang, Ruiming & Yang, Zhongqing & Wang, Ziqi & Ran, Jingyu & Yan, Yunfei & Zhang, Li, 2022. "Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation," Energy, Elsevier, vol. 244(PB).
    17. Ebrie, Awol Seid & Kim, Young Jin, 2024. "Reinforcement learning-based optimization for power scheduling in a renewable energy connected grid," Renewable Energy, Elsevier, vol. 230(C).
    18. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    19. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.
    20. Zhe Wang & Jiali Duan & Fengzhang Luo & Xuan Wu, 2024. "Two-Stage Optimal Scheduling for Urban Snow-Shaped Distribution Network Based on Coordination of Source-Network-Load-Storage," Energies, MDPI, vol. 17(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:7:y:2025:i:1:p:23-:d:1607878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.