IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i4p77-1609d1534954.html
   My bibliography  Save this article

Energy Recovery from Cannabis Residues by Combustion with and Without Steam Explosion Pretreatment in Different Air Coefficients

Author

Listed:
  • Rafael Eloy de Souza

    (Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

  • Eduardo Lins de Barros Neto

    (Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil)

  • Jean-Michel Lavoie

    (Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

  • Bruna Rego de Vasconcelos

    (Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

Abstract

Alternative options have been studied to mitigate the negative impact of fossil fuel sources, mainly especially when it comes to alternative energy sources. In this work, cannabis residues have been considered as a potential biomass residues for energy recovery due to their energy content, and the increase in the cannabis market in Canada has created an opportunity niche for treating and valorizing these residues as energy. This study thus aims to investigate the potential of energy recovery from cannabis residue pellets via combustion and the impact of steam explosion on the pellets’ properties as well as combustion behavior. Two batches of pellets were produced namely with and without the steam explosion pretreatment. The properties of the pellets were then compared to those of the CANplus certification. Cannabis pellets were then combusted at 290 °C in a fixed-bed reactor using three different air coefficients (α) ranging from 1 to 1.3 (α = 1.0, α = 1.15, and α = 1.3). Flue gas quantification was performed using gas chromatography combined with a NO x detector. Results showed that the properties of this biomass is comparable to other sources of lignocellulosic biofuels. The steam explosion pretreatment enhanced pellet properties, including higher heating value (HHV), ash content, durability, and fines allowing the product to reach the CANplus requirements. The air coefficients influenced the emission levels, with an optimal value at α = 1.15, that indicated an improved combustion quality. However, steam explosion negatively affected combustion efficiency, resulting in incomplete combustion. Overall, cannabis residues show a strong potential for energy recovery and could offer a sustainable option for bioenergy applications.

Suggested Citation

  • Rafael Eloy de Souza & Eduardo Lins de Barros Neto & Jean-Michel Lavoie & Bruna Rego de Vasconcelos, 2024. "Energy Recovery from Cannabis Residues by Combustion with and Without Steam Explosion Pretreatment in Different Air Coefficients," Clean Technol., MDPI, vol. 6(4), pages 1-16, December.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:77-1609:d:1534954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/4/77/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/4/77/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiao He & Lianjun Wang & Anthony Lau, 2020. "Investigation of Steam Treatment on the Sorption Behavior of Rice Straw Pellets," Energies, MDPI, vol. 13(20), pages 1-9, October.
    2. Lam, Pak Sui & Lam, Pak Yiu & Sokhansanj, Shahab & Lim, C. Jim & Bi, Xiaotao T. & Stephen, James D. & Pribowo, Amadeus & Mabee, Warren E., 2015. "Steam explosion of oil palm residues for the production of durable pellets," Applied Energy, Elsevier, vol. 141(C), pages 160-166.
    3. Wieland, Christoph & Kreutzkam, Benjamin & Balan, Gundula & Spliethoff, Hartmut, 2012. "Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging," Applied Energy, Elsevier, vol. 93(C), pages 184-192.
    4. Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
    5. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chukwuka Onyenwoke & Lope G. Tabil & Tim Dumonceaux & Duncan Cree & Edmund Mupondwa & Phani Adapa & Chithra Karunakaran, 2022. "Investigation of Steam Explosion Pretreatment of Sawdust and Oat Straw to Improve Their Quality as Biofuel Pellets," Energies, MDPI, vol. 15(19), pages 1-19, September.
    2. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    3. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    4. Alex Borges Pereira & Antonio José Vinha Zanuncio & Amélia Guimarães Carvalho & Angélica de Cassia Oliveira Carneiro & Vinícius Resende de Castro & Ana Marcia Macedo Ladeira Carvalho & Olivia Pereira , 2024. "Sustainable Solid Biofuel Production: Transforming Sewage Sludge and Pinus sp. Sawdust into Resources for the Circular Economy," Sustainability, MDPI, vol. 16(11), pages 1-11, May.
    5. Rocío Collado & Esperanza Monedero & Víctor Manuel Casero-Alonso & Licesio J. Rodríguez-Aragón & Juan José Hernández, 2022. "Almond Shells and Exhausted Olive Cake as Fuels for Biomass Domestic Boilers: Optimization, Performance and Pollutant Emissions," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    6. Jiapei Wei & Gefu Liang & James Alex & Tongchao Zhang & Chunbo Ma, 2020. "Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    7. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    8. Raquel Pérez-Orozco & David Patiño & Jacobo Porteiro & José Luís Míguez, 2020. "Novel Test Bench for the Active Reduction of Biomass Particulate Matter Emissions," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    9. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    10. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    11. Steiner, Maximilian & Scharler, Robert & Buchmayr, Markus & Hochenauer, Christoph & Anca-Couce, Andrés, 2024. "Benchmarking of primary measures to achieve lowest NOx emissions in small-scale biomass grate furnaces," Renewable Energy, Elsevier, vol. 234(C).
    12. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    13. Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
    14. Horvat, Ivan & Dović, Damir & Filipović, Petar, 2021. "Numerical and experimental methods in development of the novel biomass combustion system concept for wood and agro pellets," Energy, Elsevier, vol. 231(C).
    15. Kaczyński, Konrad & Kaczyńska, Katarzyna & Pełka, Piotr, 2021. "The influence of temperature and oxidizing atmosphere on the process of combusting pellets from agricultural and forest biomass in the stream of inert material," Renewable Energy, Elsevier, vol. 168(C), pages 1157-1164.
    16. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2015. "A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers," Energies, MDPI, vol. 8(9), pages 1-34, September.
    17. Tu, Yaojie & Zhou, Anqi & Xu, Mingchen & Yang, Wenming & Siah, Keng Boon & Subbaiah, Prabakaran, 2018. "NOX reduction in a 40 t/h biomass fired grate boiler using internal flue gas recirculation technology," Applied Energy, Elsevier, vol. 220(C), pages 962-973.
    18. Bai, Jing & Huang, Guilin & Qiu, Chenxu & Shang, Xutao & Sun, Zihui & Hu, Junhao & Chang, Chun, 2024. "Preparation of low-nitrogen bio-oil from co-pyrolysis of waste tobacco stem and corn stalk: Product characteristics and denitrogenation mechanism," Energy, Elsevier, vol. 301(C).
    19. Anna Brunerová & Miroslav Müller & Vladimír Šleger & Himsar Ambarita & Petr Valášek, 2018. "Bio-Pellet Fuel from Oil Palm Empty Fruit Bunches (EFB): Using European Standards for Quality Testing," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    20. Musa Bappah & Jiří Bradna & Jan Malaťák & Petr Vaculík, 2022. "Viability of some African agricultural by-products as a feedstock for solid biofuel production," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(4), pages 210-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:77-1609:d:1534954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.