IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i8p803-d1630335.html
   My bibliography  Save this article

Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions

Author

Listed:
  • Ying Wang

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China
    Green Smart Agricultural Field and Carbon Emission Reduction Engineering Research Center of University in Yunnan Province, Kunming 650201, China)

  • Qingsheng Liu

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Lihong Chen

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Qilin Lu

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Shiwei Li

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Neng Hu

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Shitong Qiu

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Shufang Wang

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China
    Green Smart Agricultural Field and Carbon Emission Reduction Engineering Research Center of University in Yunnan Province, Kunming 650201, China)

Abstract

This study aimed to improve water use efficiency at side deep fertilization paddy fields and reduce the direct discharge of tailwater from upstream dry-farming into Erhai Lake. Field experiments were conducted at Erhai Lake Basin in 2023 and 2024. In this study, paddies were used as storage basins. Two water managements were set with three replicates: flooding irrigation with deep storage and controlled drainage (CKCD), and water-saving irrigation with deep storage and controlled drainage (CCD). The rice growth indicators were observed. The results show that, in 2023, compared with CKCD, the root volume, root-to-shoot ratio, stem node spacing, stem diameter, plant height, tiller number, leaf area index and yield of CCD increased by 13.6, 19.6, 12.1, 4.1, 9.4, 3.0, 21.9, and 6.5%, respectively. For CCD, the total irrigation amount decreased by 27.3%, while irrigation productivity increased by 46.7%. In 2024, there were similar trends as in 2023. However, the tiller number and leaf area index of CCD decreased by 11 and 1.5%, respectively. Additionally, in CCD, the total irrigation amount decreased 52.5%, and the irrigation productivity increased by 1.4 kg/m 3 . There were similar regulars in soil temperature and its relationship with other growth indicates in 2023 and 2024. Soil temperature in CCD was generally higher than in CKCD. It positively correlated with stem diameter, but negatively with root volume. Additionally, root volume positively correlated with plant height and dry matter accumulation. Overall, the CCD approach could promote the indices of rice growth, increase the paddy capacity of tailwater storage, and reduce water consumption to further achieve water savings and increased yields.

Suggested Citation

  • Ying Wang & Qingsheng Liu & Lihong Chen & Qilin Lu & Shiwei Li & Neng Hu & Shitong Qiu & Shufang Wang, 2025. "Effects of Water-Saving and Controlled Drainage Water Management on Growth Indices of Mechanically Transplanted Rice Under Side Deep Fertilization Conditions," Agriculture, MDPI, vol. 15(8), pages 1-25, April.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:803-:d:1630335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/8/803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/8/803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    2. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    3. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Lan, Chaojie & Zou, Jingnan & Xu, Hailong & Qin, Bin & Li, Jinying & Chen, Ting & Weng, Peiying & Lin, Wenfang & Shen, Lihua & Wang, Wenfei & Huang, Jinwen & Fang, Changxun & Zhang, Zhixing & Chen, Ho, 2024. "Enhanced strategies for water and fertilizer management to optimize yields and promote environmental sustainability in the mechanized harvesting of ratoon rice in Southeast China," Agricultural Water Management, Elsevier, vol. 302(C).
    5. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).
    6. Zou, Tingting & Meng, Fanlei & Zhou, Jichen & Ying, Hao & Liu, Xuejun & Hou, Yong & Zhao, Zhengxiong & Zhang, Fusuo & Xu, Wen, 2023. "Quantifying nitrogen and phosphorus losses from crop and livestock production and mitigation potentials in Erhai Lake Basin, China," Agricultural Systems, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    4. Hua, Keji & He, Jun & Liao, Bin & He, Tianzhong & Yang, Peng & Zhang, Lei, 2023. "Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Naderi, Mahsa & Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Razaghian, Hadi & Šimůnek, Jiří, 2025. "A comparative assessment of grey water footprint estimation methods in paddy fields," Agricultural Water Management, Elsevier, vol. 307(C).
    6. Haojing Li & Hairun Li & Danke Zhang & Mengmeng Jiang & Jing Cao & Guowei Xu, 2025. "Irrigation methods and nitrogen-form interactions regulate starch-metabolising enzyme activity to improve rice yield and quality," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 71(3), pages 185-201.
    7. Zheng, Huifang & Mei, Peipei & Wang, Wending & Yin, Yulong & Li, Haojie & Zheng, Mengyao & Ou, Xingqi & Cui, Zhenling, 2023. "Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 282(C).
    8. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    9. Helmers, M.J. & Abendroth, L. & Reinhart, B. & Chighladze, G. & Pease, L. & Bowling, L. & Youssef, M. & Ghane, E. & Ahiablame, L. & Brown, L. & Fausey, N. & Frankenberger, J. & Jaynes, D. & King, K. &, 2022. "Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Jingjing Zhu & Feifei Dou & Fesobi Olumide Phillip & Gang Liu & Huaifeng Liu, 2023. "Effect of Nitrification Inhibitors on Photosynthesis and Nitrogen Metabolism in ‘Sweet Sapphire’ ( V. vinifera L.) Grape Seedlings," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    11. Rong Tang & Xiugui Wang & Xudong Han & Yihui Yan & Shuang Huang & Jiesheng Huang & Tao Shen & Youzhen Wang & Jia Liu, 2022. "Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China," Agriculture, MDPI, vol. 12(8), pages 1-25, August.
    12. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Jiang, Linlin & Yang, Bin & Zhao, Fan & Pan, Jie & Chen, Zhenjie & Wu, Junen, 2025. "Illuminating the dynamic water–nitrogen relationship in rice via stable isotope techniques to improve cultivation," Agricultural Water Management, Elsevier, vol. 307(C).
    14. Quan, Hao & Wu, Lihong & Sun, Jiaming & Zhang, Tibin & Wu, Lianhai & Siddique, Kadambot H.M. & Feng, Hao & Wang, Bin, 2024. "Film mulching can alleviate soil quality decrease and produce high maize yield under different irrigation strategies," Agricultural Water Management, Elsevier, vol. 306(C).
    15. Chen, Le & Deng, Xueyun & Duan, Hongxia & Tan, Xueming & Xie, Xiaobing & Pan, Xiaohua & Guo, Lin & Luo, Tao & Chen, Xinbiao & Gao, Hui & Wei, Haiyan & Zhang, Hongcheng & Zeng, Yongjun, 2025. "Canopy humidity and irrigation regimes interactively affect rice physiology, grain filling and yield during grain filling period," Agricultural Water Management, Elsevier, vol. 307(C).
    16. Zhou, Xuan & Wang, Ruoshui & Gao, Fei & Xiao, Huijie & Xu, Huasen & Wang, Dongmei, 2019. "Apple and maize physiological characteristics and water-use efficiency in an alley cropping system under water and fertilizer coupling in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 1-12.
    17. Qu, Qingbo & Groot, Jeroen C.J. & Zhang, Keqiang, 2025. "Improved manure management moves trade-off and synergy relationships among environmental indicators in desirable directions," Agricultural Systems, Elsevier, vol. 222(C).
    18. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Yanmei Yu & Junzeng Xu & Pingcang Zhang & Yan Meng & Yujiang Xiong, 2021. "Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields," IJERPH, MDPI, vol. 18(7), pages 1-15, March.
    20. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:8:p:803-:d:1630335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.