IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p297-d1580049.html
   My bibliography  Save this article

Spatial Evaluation of Salurnis marginella Occurrence According to Climate Change Using Multiple Species Distribution Models

Author

Listed:
  • Jae-Woo Song

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea)

  • Jaho Seo

    (Department of Automotive and Mechatronics Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

  • Wang-Hee Lee

    (Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
    Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea)

Abstract

Salurnis marginella causes agricultural and forest damage in various Asian environments. However, considering the environmental adaptability of pests and the active international trade, it may invade other regions in the future. As the damage to local communities caused by pests becomes difficult to control after invasion, it is essential to establish measures to minimize losses through pre-emptive monitoring and identification of high-risk areas, which can be achieved through model-based predictions. The aim of this study was to evaluate the potential distribution of S . marginella by developing multiple species distribution modeling (SDM) algorithms. Specifically, we developed the CLIMEX model and three machine learning-based models (MaxEnt, random forest, and multi-layer perceptron), integrated them to conservatively assess pest occurrence under current and future climates, and overlaid the host distribution with climatically suitable areas of S. marginella to identify high-risk areas vulnerable to the spread and invasion of the pest. The developed model, demonstrating a true skill statistic >0.8, predicted the potential continuous distribution of the species across the southeastern United States, South America, and Central Africa. This distribution currently covers approximately 9.53% of the global land area; however, the model predicted this distribution would decrease to 6.85%. Possible areas of spread were identified in Asia and the southwestern United States, considering the host distribution. This study provides data for the proactive monitoring of pests by identifying areas where S. marginella can spread.

Suggested Citation

  • Jae-Woo Song & Jaho Seo & Wang-Hee Lee, 2025. "Spatial Evaluation of Salurnis marginella Occurrence According to Climate Change Using Multiple Species Distribution Models," Agriculture, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:297-:d:1580049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    2. Haoxiang Zhao & Shanqing Yi & Yu Zhang & Nianwan Yang & Jianyang Guo & Hongmei Li & Xiaoqing Xian & Wanxue Liu, 2024. "Estimating the Optimal Control Areas of Two Classical Biocontrol Agents Against the Fall Armyworm Based on Hotspot Matching Analysis," Agriculture, MDPI, vol. 14(12), pages 1-14, December.
    3. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    4. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    5. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    6. Soria-Auza, Rodrigo W. & Kessler, Michael & Bach, Kerstin & Barajas-Barbosa, Paola M. & Lehnert, Marcus & Herzog, Sebastian K. & Böhner, Jürgen, 2010. "Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia," Ecological Modelling, Elsevier, vol. 221(8), pages 1221-1229.
    7. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    8. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    9. Daniela Remolina-Figueroa & David A. Prieto-Torres & Wesley Dáttilo & Ernesto Salgado Díaz & Laura E. Nuñez Rosas & Claudia Rodríguez-Flores & Adolfo G. Navarro-Sigüenza & María del Coro Arizmendi, 2022. "Together forever? Hummingbird-plant relationships in the face of climate warming," Climatic Change, Springer, vol. 175(1), pages 1-21, November.
    10. repec:plo:pone00:0025145 is not listed on IDEAS
    11. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    12. Huihui Zhang & Xiao Sun & Guoshuai Zhang & Xinke Zhang & Yujing Miao & Min Zhang & Zhan Feng & Rui Zeng & Jin Pei & Linfang Huang, 2022. "Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch : Predictions Based on MaxEnt Ecological Niche Modeling," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    13. Goodbody, Tristan R.H. & Coops, Nicholas C. & Srivastava, Vivek & Parsons, Bethany & Kearney, Sean P. & Rickbeil, Gregory J.M. & Stenhouse, Gordon B., 2021. "Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling," Ecological Modelling, Elsevier, vol. 440(C).
    14. Zhenan Jin & Wentao Yu & Haoxiang Zhao & Xiaoqing Xian & Kaiting Jing & Nianwan Yang & Xinmin Lu & Wanxue Liu, 2022. "Potential Global Distribution of Invasive Alien Species, Anthonomus grandis Boheman, under Current and Future Climate Using Optimal MaxEnt Model," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    15. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    16. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    17. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    18. David Makowski & Murthy Narasimha Mittinty, 2010. "Comparison of Scoring Systems for Invasive Pests Using ROC Analysis and Monte Carlo Simulations," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 906-915, June.
    19. Minerva Singh & Jessamine Badcock-Scruton & C. Matilda Collins, 2021. "What Will Remain? Predicting the Representation in Protected Areas of Suitable Habitat for Endangered Tropical Avifauna in Borneo under a Combined Climate- and Land-Use Change Scenario," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    20. Jorge E. Ramírez-Albores & Luis A. Sánchez-González & David A. Prieto-Torres & Adolfo G. Navarro-Sigüenza, 2024. "Where Are We Going Now? The Current and Future Distributions of the Monk Parakeet ( Myiopsitta monachus ) and Eurasian Collared Dove ( Streptopelia decaocto ) in a Megalopolis," Sustainability, MDPI, vol. 16(16), pages 1-20, August.
    21. Robinson, Todd P. & van Klinken, Rieks D. & Metternicht, Graciela, 2010. "Comparison of alternative strategies for invasive species distribution modeling," Ecological Modelling, Elsevier, vol. 221(19), pages 2261-2269.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:297-:d:1580049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.