IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i17p1844-d1737671.html
   My bibliography  Save this article

An Interpretable Stacked Ensemble Learning Framework for Wheat Storage Quality Prediction

Author

Listed:
  • Xinze Li

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

  • Wenyue Wang

    (Institute of Xinjiang Uygur Autonomous Region Grain and Oil Science (Grain and Oil Product Quality Supervision and Inspection Station of Xinjiang Uygur Autonomous Region), Urumqi 830000, China)

  • Bing Pan

    (Institute of Xinjiang Uygur Autonomous Region Grain and Oil Science (Grain and Oil Product Quality Supervision and Inspection Station of Xinjiang Uygur Autonomous Region), Urumqi 830000, China)

  • Siyu Zhu

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

  • Junhui Zhang

    (Institute of Xinjiang Uygur Autonomous Region Grain and Oil Science (Grain and Oil Product Quality Supervision and Inspection Station of Xinjiang Uygur Autonomous Region), Urumqi 830000, China)

  • Yunzhao Ma

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

  • Hongpeng Guo

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

  • Zhe Liu

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

  • Wenfu Wu

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

  • Yan Xu

    (College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China)

Abstract

Accurate prediction of wheat storage quality is essential for ensuring storage safety and providing early warnings of quality deterioration. However, existing methods focus solely on storage environmental conditions, neglecting the spatial distribution of temperature within grain piles, lacking interpretability, and generally failing to provide reliable forecasts of future quality changes. To overcome these challenges, an interpretable prediction framework for wheat storage quality based on stacked ensemble learning is proposed. Three key features, Effective Accumulated Temperature (EAT), Cumulative High Temperature Deviation (CHTD), and Cumulative Temperature Gradient (CTG), were derived from grain temperature data to capture the spatiotemporal dynamics of the internal temperature field. These features were then input into the stacked ensemble learning model to accurately predict historical quality changes. In addition, future grain temperatures were predicted with high precision using a Graph Convolutional Network-Temporal Fusion Transformer (GCN-TFT) model. The temperature prediction results were then employed to construct features and were fed into the stacked ensemble learning model to enable future quality change prediction. Baseline experiments indicated that the stacked model significantly outperformed individual models, achieving R 2 = 0.94, MAE = 0.44 mg KOH/100 g, and RMSE = 0.59 mg KOH/100 g. SHAP interpretability analysis revealed that EAT constituted the primary driver of wheat quality deterioration, followed by CHTD and CTG. Moreover, in future quality prediction experiments, the GCN-TFT model demonstrated high accuracy in 60-day grain temperature forecasts, and although the prediction accuracy of fatty acid value changes based on features derived from predicted temperatures slightly declined compared to features based on actual temperature data, it remained within an acceptable precision range, achieving an MAE of 0.28 mg KOH/100 g and an RMSE of 0.33 mg KOH/100 g. The experiments validated that the overall technical route from grain temperature prediction to quality prediction exhibited good accuracy and feasibility, providing an efficient, stable, and interpretable quality monitoring and early warning tool for grain storage management, which assists managers in making scientific decisions and interventions to ensure storage safety.

Suggested Citation

  • Xinze Li & Wenyue Wang & Bing Pan & Siyu Zhu & Junhui Zhang & Yunzhao Ma & Hongpeng Guo & Zhe Liu & Wenfu Wu & Yan Xu, 2025. "An Interpretable Stacked Ensemble Learning Framework for Wheat Storage Quality Prediction," Agriculture, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:17:p:1844-:d:1737671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/17/1844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/17/1844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alam, Md Fahim Bin & Tushar, Saifur Rahman & Ahmed, Tazim & Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & de Jesus Pacheco, Diego Augusto & Nayyar, Anand & Islam, Abu Reza Md Towfiqul, 2024. "Analysis of the enablers to deal with the ripple effect in food grain supply chains under disruption: Implications for food security and sustainability," International Journal of Production Economics, Elsevier, vol. 270(C).
    2. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting Jin & Rui Xu & Kunqi Su & Jinrui Gao, 2025. "A Dendritic Neural Network-Based Model for Residential Electricity Consumption Prediction," Mathematics, MDPI, vol. 13(4), pages 1-23, February.
    2. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    3. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    5. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    6. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    7. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    8. Mengfei Chen & Mohamed Kharbeche & Mohamed Haouari & Weihong Grace Guo, 2024. "A simulation-optimization framework for food supply chain network design to ensure food accessibility under uncertainty," Papers 2406.04439, arXiv.org, revised Jun 2024.
    9. Qingwen, Wang & XiaoHui, Chu & Chao, Yu, 2024. "Modeling of heat gain through green roofs utilizing artificial intelligence techniques," Energy, Elsevier, vol. 303(C).
    10. Anubhav Kumar Pandey & Vinay Kumar Jadoun & Jayalakshmi N. Sabhahit, 2022. "Real-Time Peak Valley Pricing Based Multi-Objective Optimal Scheduling of a Virtual Power Plant Considering Renewable Resources," Energies, MDPI, vol. 15(16), pages 1-30, August.
    11. R. Rueda & M. P. Cuéllar & M. Molina-Solana & Y. Guo & M. C. Pegalajar, 2019. "Generalised Regression Hypothesis Induction for Energy Consumption Forecasting," Energies, MDPI, vol. 12(6), pages 1-22, March.
    12. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    13. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    14. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    15. Seyed Azad Nabavi & Alireza Aslani & Martha A. Zaidan & Majid Zandi & Sahar Mohammadi & Naser Hossein Motlagh, 2020. "Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors," Energies, MDPI, vol. 13(19), pages 1-22, October.
    16. Beccali, M. & Bonomolo, M. & Ciulla, G. & Lo Brano, V., 2018. "Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems. A new method based on artificial neural networks," Energy, Elsevier, vol. 154(C), pages 466-476.
    17. Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
    18. Li, Xinyue & Chen, Shuqin & Li, Hongliang & Lou, Yunxiao & Li, Jiahe, 2023. "A behavior-orientated prediction method for short-term energy consumption of air-conditioning systems in buildings blocks," Energy, Elsevier, vol. 263(PD).
    19. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Xiong, Suqin & Li, Yang & Li, Qiuyang & Ye, Zhishan & Pouramini, Somayeh, 2024. "Energy consumption prediction by modified fish migration optimization algorithm: City single-family homes," Applied Energy, Elsevier, vol. 353(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:17:p:1844-:d:1737671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.