IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i14p1468-d1697501.html
   My bibliography  Save this article

The Effects of Different Straw-Returning Methods on Soil Organic Carbon Transformation in Rice–Rape Rotation Systems

Author

Listed:
  • Lening Hu

    (Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China
    University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guilin 541004, China)

  • Yujiao Ge

    (Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China
    University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guilin 541004, China)

  • Liming Zhou

    (Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China
    University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guilin 541004, China)

  • Zhongyi Li

    (Guangxi Key Laboratory of Arable Land Conservation, Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

  • Anyu Li

    (Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China
    University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guilin 541004, China)

  • Hua Deng

    (Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China
    University Engineering Research Center of Green Remediation and Low Carbon Development for Lijiang River Basin, Guilin 541004, China)

  • Tieguang He

    (Guangxi Key Laboratory of Arable Land Conservation, Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China)

Abstract

Effective management of straw in rice ( Oryza sativa L.)–rape ( Brassica napus L.) rotation systems is essential for optimising resource efficiency and improving soil quality. This two-year study investigated the impact of seven straw treatment methods on soil organic carbon (SOC) dynamics. The treatments examined were as follows: (1) control (CK); (2) rice straw (SF); (3) rapeseed straw (YF); (4) rice-straw-derived biochar (SB); (5) rapeseed-straw-derived biochar (YB); (6) mixed straw (YSF); (7) mixed biochar (YSB). Soil properties, enzyme activities and carbon fractions were subsequently analysed. During the canola growing season, the application of rice straw biochar increased oxidisable carbon (ROC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) by 25.7%, 61.7% and 67.2%, respectively, compared to the control. Notably, SB was more effective than unprocessed rice straw (SF) at increasing SOC and ROC. Furthermore, SB demonstrated superior performance in enhancing ROC (56.4%), MBC (36.0%) and DOC (12.2%) compared to hybrid biochar (YSB). SB consistently exhibited a higher carbon accumulation trend than the rapeseed-derived treatments (YF, YB and YSB). The results of the study indicated that applying rice straw biochar during the oilseed rape growing season was effective in increasing variable carbon pools and soil organic carbon accumulation.

Suggested Citation

  • Lening Hu & Yujiao Ge & Liming Zhou & Zhongyi Li & Anyu Li & Hua Deng & Tieguang He, 2025. "The Effects of Different Straw-Returning Methods on Soil Organic Carbon Transformation in Rice–Rape Rotation Systems," Agriculture, MDPI, vol. 15(14), pages 1-20, July.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1468-:d:1697501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/14/1468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/14/1468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    2. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    3. Piotr Mazur & Dariusz Gozdowski & Elżbieta Wójcik-Gront, 2022. "Soil Electrical Conductivity and Satellite-Derived Vegetation Indices for Evaluation of Phosphorus, Potassium and Magnesium Content, pH, and Delineation of Within-Field Management Zones," Agriculture, MDPI, vol. 12(6), pages 1-13, June.
    4. Rajeev Kumar Gupta & Paramjit Kaur Sraw & Jasjeet Singh Kang & Jagroop Kaur & Anu Kalia & Vivek Sharma & Surjeet Singh Manhas & Nadhir Al-Ansari & Abed Alataway & Ahmed Z. Dewidar & Mohamed A. Mattar, 2023. "Influence of 11 years of crop residue management on rice productivity under varied nitrogen levels in the rice-wheat cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(7), pages 333-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    2. Hang Guo & Linxian Liao & Junzeng Xu & Wenyi Wang & Peng Chen & Zhihui Min & Yajun Luan & Yu Han & Keke Bao, 2025. "Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies," Agriculture, MDPI, vol. 15(13), pages 1-18, June.
    3. Shizhao Zhang & Shuzhi Wang & Jiayong Zhang & Bao Wang & Hui Wang & Liwei Liu & Chong Cao & Muyang Shi & Yuhan Liu, 2025. "Research on the Application of Biochar in Carbon Sequestration: A Bibliometric Analysis," Energies, MDPI, vol. 18(11), pages 1-31, May.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    6. Xia Zhang & Yiyang Wang & Panjie Su & Weida Zeng & Jingzhe Zhu & Zongshou Cai, 2025. "Sustainable Biochar Fertiliser Production Using Melt Adsorption and Optimisation," Sustainability, MDPI, vol. 17(5), pages 1-16, February.
    7. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    8. Rafaella Campos & Gabrielle Ferreira Pires & Marcos Heil Costa, 2020. "Soil Carbon Sequestration in Rainfed and Irrigated Production Systems in a New Brazilian Agricultural Frontier," Agriculture, MDPI, vol. 10(5), pages 1-14, May.
    9. Yuanyuan Wei & Rujing Wang & Junqing Zhang & Hongyan Guo & Xiangyu Chen, 2023. "Partition Management of Soil Nutrients Based on Capacitive Coupled Contactless Conductivity Detection," Agriculture, MDPI, vol. 13(2), pages 1-13, January.
    10. Yuxuan Li & Siyue Feng & Lin Wang & Chencen Lei & Hongbo Peng & Xinhua He & Dandan Zhou & Fangfang Li, 2024. "Improvement and Stability of Soil Organic Carbon: The Effect of Earthworm Mucus Organo-Mineral Associations with Montmorillonite and Hematite," Sustainability, MDPI, vol. 16(13), pages 1-13, June.
    11. Jiuming Zhang & Jiahui Yuan & Yingxue Zhu & Enjun Kuang & Jiaye Han & Yanxiang Shi & Fengqin Chi & Dan Wei & Jie Liu, 2024. "Transformation and Sequestration of Total Organic Carbon in Black Soil under Different Fertilization Regimes with Straw Carbon Inputs," Agriculture, MDPI, vol. 14(6), pages 1-11, June.
    12. Yajin Hu & Penghui Ma & Zhihao Yang & Siyuan Liu & Yingchao Li & Ling Li & Tongchao Wang & Kadambot H. M. Siddique, 2025. "The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis," Agriculture, MDPI, vol. 15(4), pages 1-19, February.
    13. Goncharov, Anton A. & Gorbatova, Anna S. & Sidorova, Alena A. & Tiunov, Alexei V. & Bocharov, Gennady A., 2022. "Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.)," Ecological Modelling, Elsevier, vol. 465(C).
    14. Rizki Maftukhah & Katharina M. Keiblinger & Ngadisih Ngadisih & Murtiningrum Murtiningrum & Rosana M. Kral & Axel Mentler & Rebecca Hood-Nowotny, 2023. "Post-Tin-Mining Agricultural Soil Regeneration Using Local Organic Amendments Improve Nitrogen Fixation and Uptake in a Legume–Cassava Intercropping System," Land, MDPI, vol. 12(5), pages 1-17, May.
    15. Marcin Landrat & Mamo Abawalo & Krzysztof Pikoń & Paulos Asefa Fufa & Semira Seyid, 2024. "Assessing the Potential of Teff Husk for Biochar Production through Slow Pyrolysis: Effect of Pyrolysis Temperature on Biochar Yield," Energies, MDPI, vol. 17(9), pages 1-17, April.
    16. Liu, Jieyun & Qiu, Husen & He, Shuai & Tian, Guangli, 2024. "Long-term mulched drip irrigation facilitates soil organic carbon stabilization and the dominance of microbial stochastic assembly processes," Agricultural Water Management, Elsevier, vol. 302(C).
    17. Shahmir Ali Kalhoro & Xuexuan Xu & Wenyuan Chen & Rui Hua & Sajjad Raza & Kang Ding, 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    18. Chertov, Oleg & Shaw, Cindy & Shashkov, Maxim & Komarov, Alexander & Bykhovets, Sergey & Shanin, Vladimir & Grabarnik, Pavel & Frolov, Pavel & Kalinina, Olga & Priputina, Irina & Zubkova, Elena, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity," Ecological Modelling, Elsevier, vol. 345(C), pages 140-149.
    19. Bingrui Liu & Jiacheng Qian & Ran Zhao & Qijun Yang & Kening Wu & Huafu Zhao & Zhe Feng & Jianhui Dong, 2022. "Spatio-Temporal Variation and Its Driving Forces of Soil Organic Carbon along an Urban–Rural Gradient: A Case Study of Beijing," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    20. Meysam Kazemi & Faramarz F. Samavati, 2023. "Automatic Soil Sampling Site Selection in Management Zones Using a Multi-Objective Optimization Algorithm," Agriculture, MDPI, vol. 13(10), pages 1-25, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1468-:d:1697501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.