IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i12p1262-d1676608.html
   My bibliography  Save this article

Optimization of Coverage Path Planning for Agricultural Drones in Weed-Infested Fields Using Semantic Segmentation

Author

Listed:
  • Fabian Andres Lara-Molina

    (Department of Mechanical Engineering, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil)

Abstract

The application of drones has contributed to automated herbicide spraying in the context of precision agriculture. Although drone technology is mature, the widespread application of agricultural drones and their numerous advantages still demand improvements in battery endurance during flight missions in agricultural operations. This issue has been addressed by optimizing the path planning to minimize the time of the route and, therefore, the energy consumption. In this direction, a novel framework for autonomous drone-based herbicide applications that integrates deep learning-based semantic segmentation and coverage path optimization is proposed. The methodology involves computer vision for path planning optimization. First, semantic segmentation is performed using a DeepLab v3+ convolutional neural network to identify and classify regions containing weeds based on aerial imagery. Then, a coverage path planning strategy is applied to generate efficient spray routes over each weed-infested area, represented as convex polygons, while accounting for the drone’s refueling constraints. The results demonstrate the effectiveness of the proposed approach for optimizing coverage paths in weed-infested sugarcane fields. By integrating semantic segmentation with clustering and path optimization techniques, it was possible to accurately localize weed patches and compute an efficient trajectory for UAV navigation. The GA-based solution to the Traveling Salesman Problem With Refueling (TSPWR) yielded a near-optimal visitation sequence that minimizes the energy demand. The total coverage path ensured complete inspection of the weed-infected areas, thereby enhancing operational efficiency. For the sugar crop considered in this contribution, the time to cover the area was reduced by 66.3% using the proposed approach because only the weed-infested area was considered for herbicide spraying. Validation of the proposed methodology using real-world agricultural datasets shows promising results in the context of precision agriculture to improve the efficiency of herbicide or fertilizer application in terms of herbicide waste reduction, lower operational costs, better crop health, and sustainability.

Suggested Citation

  • Fabian Andres Lara-Molina, 2025. "Optimization of Coverage Path Planning for Agricultural Drones in Weed-Infested Fields Using Semantic Segmentation," Agriculture, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:12:p:1262-:d:1676608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/12/1262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/12/1262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suzuki, Yoshinori, 2016. "A dual-objective metaheuristic approach to solve practical pollution routing problem," International Journal of Production Economics, Elsevier, vol. 176(C), pages 143-153.
    2. David Levy & Kaarthik Sundar & Sivakumar Rathinam, 2014. "Heuristics for Routing Heterogeneous Unmanned Vehicles with Fuel Constraints," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, April.
    3. Hasib Mansur & Manoj Gadhwal & John Eric Abon & Daniel Flippo, 2025. "Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV," Agriculture, MDPI, vol. 15(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    2. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    3. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    4. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    5. Daqing Wu & Rong Yan & Hongtao Jin & Fengmao Cai, 2023. "An Adaptive Nutcracker Optimization Approach for Distribution of Fresh Agricultural Products with Dynamic Demands," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    6. Zhu, Xiaoning & Yan, Rui & Peng, Rui & Zhang, Zhongxin, 2020. "Optimal routing, loading and aborting of UAVs executing both visiting tasks and transportation tasks," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    8. Xiao Pan & Dongna Lu & Ning Li, 2024. "Route Planning of Supermarket Delivery through Third-Party Logistics Considering Carbon Emission Cost," Mathematics, MDPI, vol. 12(7), pages 1-18, March.
    9. Jasmin Grabenschweiger & Fabien Tricoire & Karl F. Doerner, 2018. "Finding the trade-off between emissions and disturbance in an urban context," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 554-591, September.
    10. Xu, Xiaofeng & Wang, Chenglong & Zhou, Peng, 2021. "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective," International Journal of Production Economics, Elsevier, vol. 235(C).
    11. Cunrui Ma & Baohua Mao & Qi Xu & Guodong Hua & Sijia Zhang & Tong Zhang, 2018. "Multi-Depot Vehicle Routing Optimization Considering Energy Consumption for Hazardous Materials Transportation," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    12. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    13. Leggieri, Valeria & Haouari, Mohamed, 2017. "A practical solution approach for the green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 97-112.
    14. Bo Peng & Lifan Wu & Yuxin Yi & Xiding Chen, 2020. "Solving the Multi-Depot Green Vehicle Routing Problem by a Hybrid Evolutionary Algorithm," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    15. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    16. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    17. Bao, Dan-Wen & Zhou, Jia-Yi & Zhang, Zi-Qian & Chen, Zhuo & Kang, Di, 2023. "Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification," Journal of Air Transport Management, Elsevier, vol. 108(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:12:p:1262-:d:1676608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.