IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i14p1479-d1698876.html
   My bibliography  Save this article

Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization

Author

Listed:
  • Tao Yang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xintong Du

    (School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Bo Zhang

    (School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xu Wang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zhenpeng Zhang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Chundu Wu

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, China
    Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Jiangsu University, Zhenjiang 212013, China)

Abstract

To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. The feasible working region was constructed by shrinking field boundaries inward and dilating obstacle boundaries outward. This ensured sufficient safety margins for machinery operation. Next, segmentation angles were scanned from 0° to 180° to minimize the number and irregularity of sub-regions; then a two-level simulation search was performed over 0° to 360° to optimize the working direction for each sub-region. For each sub-region, the optimal working direction was selected based on four criteria: the number of turns, travel distance, coverage redundancy, and planning time. Between sub-regions, a closed-loop interconnection path was generated using eight-directional A* search combined with polyline simplification, arc fitting, Chaikin subdivision, and B-spline smoothing. Simulation results showed that a 78° segmentation yielded four regular sub-regions, achieving 99.97% coverage while reducing the number of turns, travel distance, and planning time by up to 70.42%, 23.17%, and 85.6%. This framework accounts for field heterogeneity and turning radius constraints, effectively mitigating path redundancy in conventional fixed-angle methods. This framework enables general deployment in agricultural field operations and facilitates extensions toward collaborative and energy-optimized task planning.

Suggested Citation

  • Tao Yang & Xintong Du & Bo Zhang & Xu Wang & Zhenpeng Zhang & Chundu Wu, 2025. "Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization," Agriculture, MDPI, vol. 15(14), pages 1-21, July.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1479-:d:1698876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/14/1479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/14/1479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyang Li & Zhijian Shang & Runfeng Li & Bingbo Cui, 2022. "Adaptive Sliding Mode Path Tracking Control of Unmanned Rice Transplanter," Agriculture, MDPI, vol. 12(8), pages 1-14, August.
    2. Maria Höffmann & Shruti Patel & Christof Büskens, 2023. "Optimal Coverage Path Planning for Agricultural Vehicles with Curvature Constraints," Agriculture, MDPI, vol. 13(11), pages 1-26, November.
    3. Bingbo Cui & Xinyu Cui & Xinhua Wei & Yongyun Zhu & Zhen Ma & Yan Zhao & Yufei Liu, 2024. "Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
    4. Hasib Mansur & Manoj Gadhwal & John Eric Abon & Daniel Flippo, 2025. "Mapping for Autonomous Navigation of Agricultural Robots Through Crop Rows Using UAV," Agriculture, MDPI, vol. 15(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongxuan Wu & Xinzhong Wang & Xuegeng Chen & Yafei Zhang & Yaowen Zhang, 2025. "Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery," Agriculture, MDPI, vol. 15(12), pages 1-28, June.
    2. Zifeng Pei & Li Zhang & Haijun Fu & Yucheng Wang, 2025. "New Fault-Tolerant Sensorless Control of FPFTPM Motor Based on Hybrid Adaptive Robust Observation for Electric Agricultural Equipment Applications," Energies, MDPI, vol. 18(8), pages 1-22, April.
    3. Zhengrong Chen & Ruochen Wang & Renkai Ding & Bin Liu & Wei Liu & Dong Sun & Zhongyang Guo, 2025. "Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles," Energies, MDPI, vol. 18(11), pages 1-30, May.
    4. Yiyong Jiang & Ruochen Wang & Renkai Ding & Zeyu Sun & Yu Jiang & Wei Liu, 2025. "Research Review of Agricultural Machinery Power Chassis in Hilly and Mountainous Areas," Agriculture, MDPI, vol. 15(11), pages 1-37, May.
    5. Wenming Chen & Lianglong Hu & Gongpu Wang & Jianning Yuan & Guocheng Bao & Haiyang Shen & Wen Wu & Zicheng Yin, 2023. "Design of 4UM-120D Electric Leafy Vegetable Harvester Cutter Height off the Ground Automatic Control System Based on Incremental PID," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    6. Bingbo Cui & Xinyu Cui & Xinhua Wei & Yongyun Zhu & Zhen Ma & Yan Zhao & Yufei Liu, 2024. "Design and Testing of a Tractor Automatic Navigation System Based on Dynamic Path Search and a Fuzzy Stanley Model," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
    7. Wenming Chen & Gongpu Wang & Lianglong Hu & Jianning Yuan & Wen Wu & Guocheng Bao & Zicheng Yin, 2022. "PID-Based Design of Automatic Control System for a Travel Speed of the 4UM-120D Electric Leafy Vegetable Harvester," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    8. Jiamuyang Zhao & Shuxiang Fan & Baohua Zhang & Aichen Wang & Liyuan Zhang & Qingzhen Zhu, 2025. "Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery," Agriculture, MDPI, vol. 15(11), pages 1-25, June.
    9. Jinyang Li & Miao Zhang & Gong Zhang & Deqiang Ge & Meiqing Li, 2023. "Real-Time Monitoring System of Seedling Amount in Seedling Box Based on Machine Vision," Agriculture, MDPI, vol. 13(2), pages 1-26, February.
    10. Fabian Andres Lara-Molina, 2025. "Optimization of Coverage Path Planning for Agricultural Drones in Weed-Infested Fields Using Semantic Segmentation," Agriculture, MDPI, vol. 15(12), pages 1-24, June.
    11. Gongpu Wang & Wenming Chen & Xinhua Wei & Lianglong Hu & Jiwen Peng & Jianning Yuan & Guocheng Bao & Yemeng Wang & Haiyang Shen, 2023. "Design and Simulation Test of the Control System for the Automatic Unloading and Replenishment of Baskets of the 4UM-120D Electric Leafy Vegetable Harvester," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    12. Zhidong Zhong & Yifan Yao & Jianyu Zhu & Yufei Liu & Juan Du & Xiang Yin, 2025. "Automation of Rice Transplanter Using Agricultural Navigation," Agriculture, MDPI, vol. 15(11), pages 1-19, May.
    13. Jian Li & Shengliang Fu & Weijian Zhang & Haitao Fu & Xu Fang & Zheng Li, 2025. "Enhanced Black-Winged Kite Algorithm for Drone Coverage in Complex Fruit Farms," Agriculture, MDPI, vol. 15(10), pages 1-26, May.
    14. Meng Wang & Changhe Niu & Zifan Wang & Yongxin Jiang & Jianming Jian & Xiuying Tang, 2024. "Study on Path Planning in Cotton Fields Based on Prior Navigation Information," Agriculture, MDPI, vol. 14(11), pages 1-20, November.
    15. Ruochen Wang & Kaiqiang Zhang & Renkai Ding & Yu Jiang & Yiyong Jiang, 2025. "A Novel Hydraulic Interconnection Design and Sliding Mode Synchronization Control of Leveling System for Crawler Work Machine," Agriculture, MDPI, vol. 15(2), pages 1-19, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:14:p:1479-:d:1698876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.