IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i7p1430-d1197899.html
   My bibliography  Save this article

An Adaptive Nutcracker Optimization Approach for Distribution of Fresh Agricultural Products with Dynamic Demands

Author

Listed:
  • Daqing Wu

    (College of Economics and Management, Shanghai Ocean University, Shanghai 201306, China
    Department of Nanchang Technology, 901 Yingxiong Dadao, Economic and Technological Development Zone, Nanchang 330044, China
    These authors contributed equally to this work.)

  • Rong Yan

    (College of Economics and Management, Shanghai Ocean University, Shanghai 201306, China
    These authors contributed equally to this work.)

  • Hongtao Jin

    (College of Economics and Management, Shanghai Ocean University, Shanghai 201306, China)

  • Fengmao Cai

    (Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S37AZ, UK)

Abstract

In the operational, strategic and tactical decision-making problems of the agri-food supply chain, the perishable nature of the commodities can represent a particular complexity problem. It is, therefore, appropriate to consider decision support tools that take into account the characteristics of the products, the needs and the requirements of producers, sellers and consumers. This paper presents a green vehicle routing model for fresh agricultural product distribution and designs an adaptive hybrid nutcracker optimization algorithm (AH-NOA) based on k-means clustering to solve the problem. In the process, the AH-NOA uses the CW algorithm to increase population diversity and adds genetic operators and local search operators to enhance the global search ability for nutcracker optimization. Finally, the experimental data show that the proposed approaches effectively avoid local optima, promote population diversity and reduce total costs and carbon emission costs.

Suggested Citation

  • Daqing Wu & Rong Yan & Hongtao Jin & Fengmao Cai, 2023. "An Adaptive Nutcracker Optimization Approach for Distribution of Fresh Agricultural Products with Dynamic Demands," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1430-:d:1197899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/7/1430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/7/1430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Song & Shuailei Yuan & Yun Yang & Chufeng He, 2022. "A Study of Community Group Purchasing Vehicle Routing Problems Considering Service Time Windows," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. Daqing Wu & Chenxiang Wu, 2022. "Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    4. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    5. Suzuki, Yoshinori, 2016. "A dual-objective metaheuristic approach to solve practical pollution routing problem," International Journal of Production Economics, Elsevier, vol. 176(C), pages 143-153.
    6. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    7. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    4. Gitae Kim, 2023. "Dynamic Vehicle Routing Problem with Fuzzy Customer Response," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    5. S. F. Ghannadpour & S. Noori & R. Tavakkoli-Moghaddam, 2014. "A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 414-446, August.
    6. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    7. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    8. E Angelelli & N Bianchessi & R Mansini & M G Speranza, 2010. "Comparison of policies in dynamic routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 686-695, April.
    9. van Lon, Rinde R.S. & Ferrante, Eliseo & Turgut, Ali E. & Wenseleers, Tom & Vanden Berghe, Greet & Holvoet, Tom, 2016. "Measures of dynamism and urgency in logistics," European Journal of Operational Research, Elsevier, vol. 253(3), pages 614-624.
    10. Nasreddine Ouertani & Hajer Ben-Romdhane & Saoussen Krichen, 2022. "A decision support system for the dynamic hazardous materials vehicle routing problem," Operational Research, Springer, vol. 22(1), pages 551-576, March.
    11. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2020. "Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    12. Xuhong Cai & Li Jiang & Songhu Guo & Hejiao Huang & Hongwei Du, 2022. "TLHSA and SACA: two heuristic algorithms for two variant VRP models," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2996-3022, November.
    13. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "Real-time vehicle rerouting problems with time windows," European Journal of Operational Research, Elsevier, vol. 194(3), pages 711-727, May.
    14. Zhang, Zhenyu & Ji, Tingting & Wei, Hsi-Hsien, 2022. "Dynamic emergency inspection routing and restoration scheduling to enhance the post-earthquake resilience of a highway–bridge network," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    16. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    17. Zhang, Ying & Qi, Mingyao & Miao, Lixin & Liu, Erchao, 2014. "Hybrid metaheuristic solutions to inventory location routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 305-323.
    18. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    19. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    20. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1430-:d:1197899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.