IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i10p1068-d1656588.html
   My bibliography  Save this article

Functional Characteristics and Cellulose Degradation Genes of the Microbial Community in Soils with Different Initial pH Values

Author

Listed:
  • Li Jiang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
    High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Zhenjiang 212013, China)

  • Boyan Xu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Qi Wang

    (School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Soil pH critically regulates microbial community structure and activity, thereby influencing carbon transformation processes in terrestrial ecosystems. However, the mechanisms underlying pH-mediated shifts in microbial metabolic functions and cellulose-degrading functional genes remain poorly understood. This study investigated the responses of bacterial communities, metabolic profiles, and the abundance of cellobiohydrolase I (cbhI) and glycoside hydrolase family 48 (GH48) genes to varying pH levels in fluvo-aquic and red soils. High-throughput sequencing, PICRUSt-based metabolic prediction, and quantitative PCR were employed to analyze microbial composition, functional traits, and gene dynamics. Network analysis clarified linkages between functional genes, pathways, and taxa. The results revealed that elevated pH significantly increased CO 2 emissions and dissolved organic carbon (DOC) content in both soils. Dominant taxa, including Alphaproteobacteria, Bacteroidetes, Xanthomonadaceae, and Mycoplasma, exhibited pH-dependent enrichment. Metabolic predictions indicated that pH positively influenced genes linked to biodegradation and xenobiotic metabolism in fluvo-aquic soil but suppressed energy-metabolism-related genes. Contrastingly, in red soil, cbhI and GH48 gene abundance declined with rising pH, suggesting that acidic conditions favor cellulolytic activity. Network analysis identified strong positive correlations between CO 2 emissions and Caulobacteraceae, while cbhI and GH48 genes were closely associated with taxa such as Xanthomonadaceae, Comamonadaceae, and Micromonosporaceae, which drive organic matter decomposition. These findings underscore pH as a pivotal regulator of microbial community structure and functional gene expression, with soil-specific responses highlighting the need for tailored strategies to optimize carbon cycling and sequestration in agricultural ecosystems.

Suggested Citation

  • Li Jiang & Boyan Xu & Qi Wang, 2025. "Functional Characteristics and Cellulose Degradation Genes of the Microbial Community in Soils with Different Initial pH Values," Agriculture, MDPI, vol. 15(10), pages 1-18, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:10:p:1068-:d:1656588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/10/1068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/10/1068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Éva-Boglárka Vincze & Annamária Becze & Éva Laslo & Gyöngyvér Mara, 2024. "Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility," Agriculture, MDPI, vol. 14(1), pages 1-23, January.
    2. Zheng, Zhen & He, Yuming & He, Yingli & Zhan, Jing & Shi, Chunyan & Xu, Yujie & Wang, Xiaowen & Wang, Jian & Zhang, Chao, 2025. "Micro-nano bubble water subsurface drip irrigation affects strawberry yield and quality by modulation of microbial communities," Agricultural Water Management, Elsevier, vol. 307(C).
    3. Yong-zong Lu & Peng-fei Liu & Aliasghar Montazar & Kyaw-Tha Paw U & Yong-guang Hu, 2019. "Soil Water Infiltration Model for Sprinkler Irrigation Control Strategy: A Case for Tea Plantation in Yangtze River Region," Agriculture, MDPI, vol. 9(10), pages 1-11, September.
    4. Qingsong Yuan & Ya Gao & Guozhen Ma & Haizhong Wu & Qingsong Li & Yali Zhang & Shiliang Liu & Xiaolei Jie & Dengxiao Zhang & Daichang Wang, 2025. "The Long-Term Effect of Biochar Amendment on Soil Biochemistry and Phosphorus Availability of Calcareous Soils," Agriculture, MDPI, vol. 15(5), pages 1-16, February.
    5. Heming Li & Bangning Zhou & Zuopin Zhuo & Lei Wang & Zumei Wang & Chuanjin Xie & Fangshi Jiang & Jinshi Lin & Yanhe Huang & Yue Zhang, 2024. "Effects of Cover Measures on Soil Organic Nitrogen Fractions and Total Soluble Nitrogen Pools in Citrus Orchards of the Red Soil Hilly Region of Southern China," Agriculture, MDPI, vol. 14(11), pages 1-17, October.
    6. Zhiyu ZUO & Xiangnan LI & Chao XU & Junjie YANG & Xiancan ZHU & Shengqun LIU & Fengbin SONG & Fulai LIU & Hanping MAO, 2017. "Responses of barley Albina and Xantha mutants deficient in magnesium chelatase to soil salinity," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(8), pages 348-354.
    7. Yiyuan Pang & Hong Li & Pan Tang & Chao Chen, 2022. "Synchronization Optimization of Pipe Diameter and Operation Frequency in a Pressurized Irrigation Network Based on the Genetic Algorithm," Agriculture, MDPI, vol. 12(5), pages 1-16, May.
    8. Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Zhiyu Zuo & Junhong Guo & Caiyun Xin & Shengqun Liu & Hanping Mao & Yongjun Wang & Xiangnan Li, 2019. "Salt acclimation induced salt tolerance in wild-type and abscisic acid-deficient mutant barley," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(10), pages 516-521.
    4. Zhiyu Zuo & Tianyuan Lü & Jicheng Sun & Haitao Peng & Deyong Yang & Jinxiu Song & Guoxin Ma & Hanping Mao, 2025. "Dynamic Water and Fertilizer Management Strategy for Greenhouse Tomato Based on Morphological Characteristics," Agriculture, MDPI, vol. 15(3), pages 1-23, January.
    5. Masinde, Peter & Wahome, Bernard M., 2022. "The effect of biochar from rice husks on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato cultivar anna F1 grown in two soil types," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(05).
    6. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Yafei Wang & Qiang Shi & Jiale Lin & Xuanting Lu & Bin Ye & Huanxing Lv & Xiaoxue Du & Tianhua Chen, 2025. "Hormone Metabolism and Substance Accumulation in Cucumber Plants: Downy Mildew Infection and Potassium Stress," Agriculture, MDPI, vol. 15(9), pages 1-13, May.
    8. Yang Lei & Lihong Xu & Minggui Wang & Sheng Sun & Yuhua Yang & Chao Xu, 2024. "Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
    9. Guanbing Zhao & Kuijian Zhan, 2025. "Research on the Evolutionary Game of Quality Governance of Geographical Indication Agricultural Products in China: From the Perspective of Industry Self-Governance," Sustainability, MDPI, vol. 17(8), pages 1-28, April.
    10. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    11. Abdelghany, Ahmed Elsayed & Dou, Zhiyao & Alashram, Mohamed G. & Eltohamy, Kamel Mohamed & Elrys, Ahmed S. & Liu, Xiaoqiang & Wu, You & Cheng, Minghui & Fan, Junliang & Zhang, Fucang, 2023. "The joint application of biochar and nitrogen enhances fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato under drip fertigation," Agricultural Water Management, Elsevier, vol. 290(C).
    12. Chen, Xu & Lu, Qi & Yuan, Ye & He, Kaixun, 2024. "A novel derivative search political optimization algorithm for multi-area economic dispatch incorporating renewable energy," Energy, Elsevier, vol. 300(C).
    13. Ouyang, Zan & Zhang, Jie & Liang, Xueli & Wang, Hui & Yang, Zhenfeng & Tang, Rong & Yu, Qihua & Zhang, Yong, 2025. "Micro-nano aerated subsurface drip irrigation and biochar promote photosynthesis, dry matter accumulation and yield of cucumbers in greenhouse," Agricultural Water Management, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:10:p:1068-:d:1656588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.