IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p2028-d1518591.html
   My bibliography  Save this article

Stomatal Density Variation Within and Among Different Soybean Cultivars Across Various Growth Stages

Author

Listed:
  • Syada Nizer Sultana

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
    College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Hyun Jo

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
    Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Jong Tae Song

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Kihwan Kim

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
    Upland Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea)

  • Jeong-Dong Lee

    (Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
    Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea)

Abstract

Stomata regulate CO 2 and water vapor exchange between leaves and the atmosphere, serving as a vital indicator of climate change resilience. Therefore, understanding the difference in stomatal numbers and patterns among different soybean cultivars across growth stages is essential to comprehending the complex mechanisms underlying soybean adaptation to climate change. The accurate measurements of stomatal density in soybean leaves are essential to understanding the complexity of stomatal density by environmental conditions. We demonstrated that the five epidermal sections and five microscopic images taken from both sides of each epidermal section at each leaf position (tip, middle, and bottom) were sufficient for stomatal measurements. Furthermore, we investigated variations in stomatal density among leaflet locations (left, right, and central) and leaf position across different growth stages. Notably, while there was no significant variation between the two leaves of the vegetative cotyledon (VC) stage and among the three leaflets of the V1 (first trifoliate) to V4 (fourth trifoliate) growth stages, leaves of the VC stage exhibited the lowest stomatal density, whereas those of the V4 stage exhibited the highest stomatal density. These findings could serve as a valuable tool for evaluating stomatal density, analyzing physiological differences under adverse climatic conditions, and phenotyping a large-scale population to identify the genetic factors responsible for stomatal density variations in soybean genotypes.

Suggested Citation

  • Syada Nizer Sultana & Hyun Jo & Jong Tae Song & Kihwan Kim & Jeong-Dong Lee, 2024. "Stomatal Density Variation Within and Among Different Soybean Cultivars Across Various Growth Stages," Agriculture, MDPI, vol. 14(11), pages 1-14, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2028-:d:1518591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/2028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/2028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alistair M. Hetherington & F. Ian Woodward, 2003. "The role of stomata in sensing and driving environmental change," Nature, Nature, vol. 424(6951), pages 901-908, August.
    2. Cawas B. Engineer & Majid Ghassemian & Jeffrey C. Anderson & Scott C. Peck & Honghong Hu & Julian I. Schroeder, 2014. "Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development," Nature, Nature, vol. 513(7517), pages 246-250, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayaka Matsui & Saki Noda & Keiko Kuwata & Mika Nomoto & Yasuomi Tada & Hidefumi Shinohara & Yoshikatsu Matsubayashi, 2024. "Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Jiyu Chen & Jing Gao & Qi Wang & Xianming Tan & Shenglan Li & Ping Chen & Taiwen Yong & Xiaochun Wang & Yushan Wu & Feng Yang & Wenyu Yang, 2022. "Blue-Light-Dependent Stomatal Density and Specific Leaf Weight Coordinate to Promote Gas Exchange of Soybean Leaves," Agriculture, MDPI, vol. 13(1), pages 1-13, December.
    3. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Tao Guo & Zi-Qi Lu & Yehui Xiong & Jun-Xiang Shan & Wang-Wei Ye & Nai-Qian Dong & Yi Kan & Yi-Bing Yang & Huai-Yu Zhao & Hong-Xiao Yu & Shuang-Qin Guo & Jie-Jie Lei & Ben Liao & Jijie Chai & Hong-Xuan, 2023. "Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Hu, Bo & Gong, Wei, 2016. "Modeling and comparison of hourly photosynthetically active radiation in different ecosystems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 436-453.
    6. Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    7. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    8. Armando Hernández Pérez & Juana Cruz García Santiago & Valentín Robledo Torres & Alonso Méndez López & Alberto Sandoval Rangel & Neymar Camposeco Montejo, 2021. "Nitrate/ammonium ratio effect on the growth, yield and foliar anatomy of grafted tomato plants," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 48(2), pages 80-89.
    9. Siddhartha Shankar Bhattacharyya & Pedro Mondaca & Oloka Shushupti & Sharjeel Ashfaq, 2023. "Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO 2 Levels," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    10. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    11. Aicha Nait Douch & Laila Boukhalef & Abdelhafed El Asbahani & Ali A. Al-Namazi & Khadija El Mehrach & Laila Bouqbis & Mourad Touaf & Fatima Ain-Lhout, 2022. "Photosynthetic Behavior of Argania spinosa (L.) Skeels Induced under Grazed and Ungrazed Conditions," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    12. Saashia Fuji & Shota Yamauchi & Naoyuki Sugiyama & Takayuki Kohchi & Ryuichi Nishihama & Ken-ichiro Shimazaki & Atsushi Takemiya, 2024. "Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Yawen Li & Yinan Ding & Lili Qu & Xinru Li & Qinxuan Lai & Pingxia Zhao & Yongxiang Gao & Chengbin Xiang & Chunlei Cang & Xin Liu & Linfeng Sun, 2022. "Structure of the Arabidopsis guard cell anion channel SLAC1 suggests activation mechanism by phosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Yingfei Cao & Hong Xu & Yonggeng Li & Hua Su, 2024. "Vegetation Growth and Physiological Adaptation of Pioneer Plants on Mobile Sand Dunes," Sustainability, MDPI, vol. 16(20), pages 1-13, October.
    15. Juan Arcila-Diaz & Jorge Delgado-Caramutti & Pablo A. Millones-Gómez & Joel Figueroa-Quiñones & Alejandro Valencia-Arias, 2025. "Research trends in Peruvian universities: proposal for a research agenda with a bibliometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(1), pages 489-514, January.
    16. Silber, Avner & Israeli, Yair & Levi, Menashe & Keinan, Ami & Chudi, George & Golan, Avner & Noy, Michael & Levkovitch, Irit & Narkis, Kfir & Naor, Amos & Assouline, Shmuel, 2013. "The roles of fruit sink in the regulation of gas exchange and water uptake: A case study for avocado," Agricultural Water Management, Elsevier, vol. 116(C), pages 21-28.
    17. Tao Hong & Han Lin & Dongjin He, 2018. "Characteristics and correlations of leaf stomata in different Aleurites montana provenances," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-10, December.
    18. Pragya Dhakal Poudel & Max Cowan & Lindsay Shaw & Joanne De Faveri & Bruce Topp & Mobashwer Alam, 2023. "Macadamia Breeding for Reduced Plant Vigor: Progress and Prospects for Profitable and Sustainable Orchard Systems," Sustainability, MDPI, vol. 15(19), pages 1-33, October.
    19. Congcong Liu & Lawren Sack & Ying Li & Jiahui Zhang & Kailiang Yu & Qiongyu Zhang & Nianpeng He & Guirui Yu, 2023. "Relationships of stomatal morphology to the environment across plant communities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Nasreen Fatima Veesar & Wajid Ali Jatoi & Naila Gandahi & Ghulam Aisha & Altaf Hussain Solangi & Shahnaz Memon, 2020. "Evaluation of Cotton Genotypes for Drought Tolerance and Their Correlation Study at Seedling Stage," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 29(1), pages 22090-22099, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2028-:d:1518591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.