IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1738-d1231279.html
   My bibliography  Save this article

Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil

Author

Listed:
  • Da-Hee An

    (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea)

  • Dong-Chil Chang

    (Planning & Coordination Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea)

  • Kwang-Soo Kim

    (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea)

  • Ji-Eun Lee

    (Planning & Coordination Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea)

  • Young-Lok Cha

    (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea)

  • Jae-Hee Jeong

    (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea)

  • Ji-Bong Choi

    (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea)

  • Soo-Yeon Kim

    (Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Republic of Korea)

Abstract

As biochar improves soil fertility and crop productivity, there is a growing interest in it as a resource for sustainable agriculture. Miscanthus sacchariflorus has promising applications in various industries because it has a large amount of biomass. However, research on the agricultural utilization of Miscanthus-derived biochar is insufficient. The aim of this study was to demonstrate the effects of Miscanthus biochar on the soil environment and soybean growth. First, Miscanthus biochar was amended at different levels (3 or 10 tons/ha) in upland soil, after which the soil properties, root development, and yield of soybeans were compared with the control (without biochar). In the soil amended with 10 tons/ha of biochar (BC10), organic matter (OM) and available phosphate increased 1.6 and 2.0 times, respectively, compared with that in the control soil (CON). In addition, the soil dehydrogenase activity increased by 70% in BC10, and 16S rRNA gene sequence analysis revealed that the structure of the microbial community changed after amendment with biochar. The bacterial phyla that differed between CON and BC10 were Acidobacteria and Chloroflexi, which are known to be involved in carbon cycling. Owing to these changes in soil properties, the root dry weight and number of nodules in soybeans increased by 23% and 27%, respectively, and the seed yield increased 1.5-fold in BC10. In conclusion, Miscanthus biochar increased the fertility of soybean-growing soil and consequently increased seed yield. This study is valuable for the practical application of biochar for sustainable agriculture.

Suggested Citation

  • Da-Hee An & Dong-Chil Chang & Kwang-Soo Kim & Ji-Eun Lee & Young-Lok Cha & Jae-Hee Jeong & Ji-Bong Choi & Soo-Yeon Kim, 2023. "Miscanthus-Derived Biochar Enhanced Soil Fertility and Soybean Growth in Upland Soil," Agriculture, MDPI, vol. 13(9), pages 1-12, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1738-:d:1231279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    2. Govindarajan Venkatesh & Kodigal A. Gopinath & Kotha Sammi Reddy & Baddigam Sanjeeva Reddy & Mathyam Prabhakar & Cherukumalli Srinivasarao & Venugopalan Visha Kumari & Vinod Kumar Singh, 2022. "Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    3. Shaojing Yin & Fengyue Suo & Qingxian Kong & Xiangwei You & Xin Zhang & Yuan Yuan & Xueyang Yu & Yadong Cheng & Ruixue Sun & Hao Zheng & Chengsheng Zhang & Yiqiang Li, 2021. "Biochar Enhanced Growth and Biological Nitrogen Fixation of Wild Soybean ( Glycine max subsp. soja Siebold & Zucc.) in a Coastal Soil of China," Agriculture, MDPI, vol. 11(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    2. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "Selective production of furfural and phenols from rice husk: the influence of synergetic pretreatments with different order," Renewable Energy, Elsevier, vol. 168(C), pages 297-308.
    3. Dang, Han & Xu, Runsheng & Zhang, Jianliang & Wang, Mingyong & Ye, Lian & Jia, Guoli, 2023. "Removal of oxygen-containing functional groups during hydrothermal carbonization of biomass: Experimental and DFT study," Energy, Elsevier, vol. 276(C).
    4. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.
    5. Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
    6. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    7. Yang, Fangming & Liu, Xin & Li, Mengbin & Uguna, Clement & Wang, Wenlong & Sun, Chenggong, 2023. "Polyvinyl chloride (PVC) derived microporous carbons prepared via hydrothermal dechlorination and potassium hydroxide activation for efficient CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    8. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Gianluigi Farru & Judy A. Libra & Kyoung S. Ro & Carla Cannas & Claudio Cara & Aldo Muntoni & Martina Piredda & Giovanna Cappai, 2023. "Valorization of Face Masks Produced during COVID-19 Pandemic through Hydrothermal Carbonization (HTC): A Preliminary Study," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    10. Nallagatla Vinod Kumar & Gajanan L. Sawargaonkar & C. Sudha Rani & Ajay Singh & T. Ram Prakash & S. Triveni & Prasad J. Kamdi & Rajesh Pasumarthi & Rayapati Karthik & Bathula Venkatesh, 2023. "Comparative Analysis of Pigeonpea Stalk Biochar Characteristics and Energy Use under Different Biochar Production Methods," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    11. Zhang, Deli & Wang, Fang & Shen, Xiuli & Yi, Weiming & Li, Zhihe & Li, Yongjun & Tian, Chunyan, 2018. "Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate," Energy, Elsevier, vol. 165(PB), pages 527-536.
    12. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    13. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.
    14. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    15. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    16. Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
    17. Govindarajan Venkatesh & Kodigal A. Gopinath & Kotha Sammi Reddy & Baddigam Sanjeeva Reddy & Mathyam Prabhakar & Cherukumalli Srinivasarao & Venugopalan Visha Kumari & Vinod Kumar Singh, 2022. "Characterization of Biochar Derived from Crop Residues for Soil Amendment, Carbon Sequestration and Energy Use," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    18. Gao, Ying & Liu, Yinghui & Zhu, Guangkuo & Xu, Jiayu & xu, Hui & Yuan, Qiaoxia & Zhu, Yuezhao & Sarma, Jyotirmoy & Wang, Yinfeng & Wang, Jing & Ji, Lian, 2018. "Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products," Energy, Elsevier, vol. 165(PB), pages 662-672.
    19. Akbar Saba & Kyle McGaughy & M. Toufiq Reza, 2019. "Techno-Economic Assessment of Co-Hydrothermal Carbonization of a Coal-Miscanthus Blend," Energies, MDPI, vol. 12(4), pages 1-17, February.
    20. Wilk, MaƂgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1738-:d:1231279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.