IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2022i1p106-d1019972.html
   My bibliography  Save this article

Evaluation of the Impact of Changing from Rainfed to Irrigated Agriculture in a Mediterranean Watershed in Spain

Author

Listed:
  • Brian Omondi Oduor

    (Department of Engineering, IS-FOOD Institute (Innovation & Sustainable Development in Food Chain), Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain)

  • Miguel Ángel Campo-Bescós

    (Department of Engineering, IS-FOOD Institute (Innovation & Sustainable Development in Food Chain), Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain)

  • Noemí Lana-Renault

    (Department of Human Sciences, University of La Rioja, 26006 Logroño, Spain
    Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH Amsterdam, The Netherlands)

  • Alberto Alfaro Echarri

    (Navarre Institute of Agricultural and Food Technologies and Infrastructures (INTIA), Avenida Serapio Huici 22, 31610 Villava, Spain)

  • Javier Casalí

    (Department of Engineering, IS-FOOD Institute (Innovation & Sustainable Development in Food Chain), Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain)

Abstract

The conversion of cultivated areas from rainfed to irrigated agriculture alters the watershed’s hydrology and could affect the water quality and quantity. This study examined how streamflow, nitrate load, and nitrate concentration changed after irrigation implementation in a Mediterranean watershed in Navarre, Spain. The Soil Water Assessment Tool (SWAT) model was applied in the Cidacos River watershed to simulate streamflow and nitrate load under rainfed conditions. The simulated outputs were then compared with the post-irrigation observed values from mid-2017 to 2020 at the watershed outlet in Traibuenas to determine the irrigation impact. The model calibration (2000–2010) and validation (2011–2020) results for streamflow (NSE = 0.82/0.83) and nitrate load (NSE = 0.71/0.68) were satisfactory, indicating the model’s suitability for use in the watershed. A comparison of the rainfed and post-irrigation periods showed an average annual increase in streamflow (952.33 m 3 ha −1 , +18.8%), nitrate load (68.17 kg ha −1 , +62.3%), and nitrate concentration (0.89 mg L −1 ha −1 , +79%) at the watershed outlet. Irrigation also caused seasonal changes by altering the cropping cycle and increasing the streamflow and nitrate export during the summer and autumn when irrigation was at its peak. The increases in the post-irrigation period were attributed to the added irrigation water for streamflow and increased nitrogen fertilizer application due to changes in cropping for nitrate concentration and export. These findings are useful to farmers and managers in deciding the best nitrate pollution control and management measures to implement. Furthermore, these results could guide future development and expansion of irrigated lands to improve agricultural sustainability.

Suggested Citation

  • Brian Omondi Oduor & Miguel Ángel Campo-Bescós & Noemí Lana-Renault & Alberto Alfaro Echarri & Javier Casalí, 2022. "Evaluation of the Impact of Changing from Rainfed to Irrigated Agriculture in a Mediterranean Watershed in Spain," Agriculture, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:106-:d:1019972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    2. Munoz-Carpena, R. & Ritter, A. & Socorro, A. R. & Perez, N., 2002. "Nitrogen evolution and fate in a Canary Islands (Spain) sprinkler fertigated banana plot," Agricultural Water Management, Elsevier, vol. 52(2), pages 93-117, January.
    3. Casalí, J. & Gastesi, R. & Álvarez-Mozos, J. & De Santisteban, L.M. & Lersundi, J. Del Valle de & Giménez, R. & Larrañaga, A. & Goñi, M. & Agirre, U. & Campo, M.A. & López, J.J. & Donézar, M., 2008. "Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 95(10), pages 1111-1128, October.
    4. Molina-Navarro, Eugenio & Hallack-Alegría, Michelle & Martínez-Pérez, Silvia & Ramírez-Hernández, Jorge & Mungaray-Moctezuma, Alejandro & Sastre-Merlín, Antonio, 2016. "Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico," Agricultural Water Management, Elsevier, vol. 175(C), pages 29-42.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
    2. Duarte, A.C. & Mateos, L., 2022. "How changes in cropping intensity affect water usage in an irrigated Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Giménez, R. & Casalí, J. & Grande, I. & Díez, J. & Campo, M.A. & Álvarez-Mozos, J. & Goñi, M., 2012. "Factors controlling sediment export in a small agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 110(C), pages 1-8.
    4. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Salt and nitrate exported from the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 105-112.
    5. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    6. Rafiei-Sardooi, Elham & Azareh, Ali & Joorabian Shooshtari, Sharif & Parteli, Eric J.R., 2022. "Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran," Ecological Modelling, Elsevier, vol. 467(C).
    7. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    8. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    9. Dorota Dymek & Wojciech Zgłobicki & Bogusława Baran-Zgłobicka, 2021. "The Impact of Mosaic Land Use and Land Cover on the Quality of River Waters (Case Study: Lubelskie Province, E Poland)," Land, MDPI, vol. 10(12), pages 1-20, November.
    10. Albizua, Amaia & Pascual, Unai & Corbera, Esteve, 2019. "Large-scale Irrigation Impacts Socio-cultural Values: An Example from Rural Navarre, Spain," Ecological Economics, Elsevier, vol. 159(C), pages 354-361.
    11. Ritter, A. & Hupet, F. & Munoz-Carpena, R. & Lambot, S. & Vanclooster, M., 2003. "Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods," Agricultural Water Management, Elsevier, vol. 59(2), pages 77-96, March.
    12. Cherobim, Verediana Fernanda & Huang, Chi-Hua & Favaretto, Nerilde, 2017. "Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses," Agricultural Water Management, Elsevier, vol. 184(C), pages 96-103.
    13. Casalí, J. & Giménez, R. & Díez, J. & Álvarez-Mozos, J. & Del Valle de Lersundi, J. & Goñi, M. & Campo, M.A. & Chahor, Y. & Gastesi, R. & López, J., 2010. "Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 97(10), pages 1683-1694, October.
    14. Merchán, D. & Causapé, J. & Abrahão, R. & García-Garizábal, I., 2015. "Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. II: Salts and nitrate exported," Agricultural Water Management, Elsevier, vol. 158(C), pages 288-296.
    15. Claudia A. Ochoa-Noriega & Juan F. Velasco-Muñoz & José A. Aznar-Sánchez & Ernesto Mesa-Vázquez, 2021. "Overview of Research on Sustainable Agriculture in Developing Countries. The Case of Mexico," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    16. Pulighe, Giuseppe & Pirelli, Tiziana, 2023. "Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Paulo de Oliveira & Teodorico Sobrinho & Dulce Rodrigues & Elói Panachuki, 2011. "Erosion Risk Mapping Applied to Environmental Zoning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 1021-1036, February.
    18. Jeremy Dominic & Ahmad Aris & Wan Sulaiman, 2015. "Factors Controlling the Suspended Sediment Yield During Rainfall Events of Dry and Wet Weather Conditions in A Tropical Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4519-4538, September.
    19. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:106-:d:1019972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.