IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1466-d914815.html
   My bibliography  Save this article

Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields

Author

Listed:
  • Mingqing Liu

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Yuncheng Wu

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Sijie Huang

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Yuwen Yang

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Yan Li

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Lei Wang

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Yunguan Xi

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Jibing Zhang

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Qiuhui Chen

    (Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China)

Abstract

Inappropriate organic fertilizer application may cause serious environmental risks, especially nitrogen (N) and phosphorus (P) losses. To achieve a win–win for high yield and environmental protection in organic agriculture, it was essential to demonstrate the relationship between the organic fertilizer input, rice yields, and risks of N and P losses. Based on a rice and green manure cropping rotation field experiment in the Yangtze River Delta of China, the effects of organic fertilization rates on the dynamics of surface water N and P concentrations and rice grain yields were determined. The results showed that the N (total N, ammonium-nitrogen, nitrate-nitrogen) and P (total P and dissolved P) concentrations in surface water immediately and greatly reached the highest values 1 day after basal fertilization and topdressing fertilization. Then, the N and P concentrations sharply decreased and were maintained at a relatively low level. The initial 3 and 7 days after organic fertilization were the high-risk periods for controlling N and P runoff losses. The surface water N and P concentrations had a positive correlation with the organic fertilization rate in high-risk periods. Besides, the effects of organic fertilization on surface water P concentrations existed longer than those of N concentrations. The rice grain yields increased with the increase in organic fertilization rates, but high organic fertilizer input (>225 kg N per hectare) did not increase the grain yield. Meanwhile, the high organic fertilizer input had the highest risks for N and P losses. Therefore, in organic rice farming, organic fertilization rates with 150~200 kg N per hectare are the optimal organic fertilizer input, with relatively high grain yields and low N and P losses.

Suggested Citation

  • Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1466-:d:914815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. MARCHAND, Sébastien & GUO, Huanxiu, 2014. "The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production," China Economic Review, Elsevier, vol. 31(C), pages 201-216.
    2. Radovan Savic & Milica Stajic & Boško Blagojević & Atila Bezdan & Milica Vranesevic & Vesna Nikolić Jokanović & Aleksandar Baumgertel & Marina Bubalo Kovačić & Jelena Horvatinec & Gabrijel Ondrasek, 2022. "Nitrogen and Phosphorus Concentrations and Their Ratios as Indicators of Water Quality and Eutrophication of the Hydro-System Danube–Tisza–Danube," Agriculture, MDPI, vol. 12(7), pages 1-17, June.
    3. ChaoQing Yu & Xiao Huang & Han Chen & H. Charles J. Godfray & Jonathon S. Wright & Jim W. Hall & Peng Gong & ShaoQiang Ni & ShengChao Qiao & GuoRui Huang & YuChen Xiao & Jie Zhang & Zhao Feng & XiaoTa, 2019. "Managing nitrogen to restore water quality in China," Nature, Nature, vol. 567(7749), pages 516-520, March.
    4. Can Zhao & Guangming Liu & Yue Chen & Yan Jiang & Yi Shi & Lingtian Zhao & Pingqiang Liao & Weiling Wang & Ke Xu & Qigen Dai & Zhongyang Huo, 2022. "Excessive Nitrogen Application Leads to Lower Rice Yield and Grain Quality by Inhibiting the Grain Filling of Inferior Grains," Agriculture, MDPI, vol. 12(7), pages 1-17, July.
    5. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    6. Yandong Lv & Yue Hu & Fujing Sun & Wanyue Huo & Hongyu Li & Lihua Liu & Dawei Yin & Guiping Zheng & Xiaohong Guo, 2022. "Yield and Resource Utilization Efficiency Gap in Early Maturing Japonica Rice Cultivars under Different Management Strategies—A Different Location Investigation," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifen Huang & Jie Yang & Xiaoyi Cui & Huozhong Yang & Shouhong Wang & Hengyang Zhuang, 2016. "Synergy and Transition of Recovery Efficiency of Nitrogen Fertilizer in Various Rice Genotypes under Organic Farming," Sustainability, MDPI, vol. 8(9), pages 1-14, August.
    2. Heng Liu & Caizhu Huang & Heng Lian & Xia Cui, 2023. "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    3. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    4. Mei-Yin Kuan & Szu-Yung Wang & Jiun-Hao Wang, 2021. "Investigating the Association between Farmers’ Organizational Participation and Types of Agricultural Product Certifications: Empirical Evidence from a National Farm Households Survey in Taiwan," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    5. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Marko Reljić & Marija Romić & Davor Romić & Gordon Gilja & Vedran Mornar & Gabrijel Ondrasek & Marina Bubalo Kovačić & Monika Zovko, 2023. "Advanced Continuous Monitoring System—Tools for Water Resource Management and Decision Support System in Salt Affected Delta," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    7. Nirmala Bandumula & Santosha Rathod & Gabrijel Ondrasek & Muthuraman Pitchiah Pillai & Raman Meenakshi Sundaram, 2022. "An Economic Evaluation of Improved Rice Production Technology in Telangana State, India," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    8. Xiang Luo & Yungui Li & Qingsong Wu & Zifei Wei & Qingqing Li & Liang Wei & Yi Shen & Rong Wang, 2019. "Characteristics of Internal Ammonium Loading from Long-Term Polluted Sediments by Rural Domestic Wastewater," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    9. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    10. Rong Tang & Xiugui Wang & Xudong Han & Yihui Yan & Shuang Huang & Jiesheng Huang & Tao Shen & Youzhen Wang & Jia Liu, 2022. "Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China," Agriculture, MDPI, vol. 12(8), pages 1-25, August.
    11. Li Wang & Siyuan Liu & Wendi Xuan & Shaopeng Li & Anlei Wei, 2022. "Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    12. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    13. Qiong Zhou & Qian Tan & Huixiang Zeng & Yu-En Lin & Peng Zhu, 2023. "Does Soil Pollution Prevention and Control Promote Corporate Sustainable Development? A Quasi-Natural Experiment of “10-Point Soil Plan” in China," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
    14. Zhang, Qian & Sun, Zhongxiao & Huang, Wei, 2018. "Does land perform well for corn planting? An empirical study on land use efficiency in China," Land Use Policy, Elsevier, vol. 74(C), pages 273-280.
    15. Yinglong Chen & Yang Liu & Shiqi Dong & Juge Liu & Yang Wang & Shahid Hussain & Huanhe Wei & Zhongyang Huo & Ke Xu & Qigen Dai, 2022. "Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area," Agriculture, MDPI, vol. 12(11), pages 1-13, October.
    16. Liu, Xiaoxuan & Yu, Le & Cai, Wenjia & Ding, Qun & Hu, Weixun & Peng, Dailiang & Li, Wei & Zhou, Zheng & Huang, Xiaomeng & Yu, Chaoqing & Gong, Peng, 2021. "The land footprint of the global food trade: Perspectives from a case study of soybeans," Land Use Policy, Elsevier, vol. 111(C).
    17. Zhen Yang & Weijun Gao & Jiawei Li, 2022. "Can Economic Growth and Environmental Protection Achieve a “Win–Win” Situation? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    18. Xie, Zheyu & Zhang, Yujing & Zhang, Zhenyu & Huang, Jinliang, 2023. "Nitrate removal mechanism in riparian groundwater in an intensified agricultural catchment," Agricultural Water Management, Elsevier, vol. 280(C).
    19. Homayounfar, Mehran & Muneepeerakul, Rachata & Martinez, Christopher J., 2023. "Navigating farming-BMP-policy interplay through a dynamical model," Ecological Economics, Elsevier, vol. 205(C).
    20. Huiming Xie & Xiaopeng Wang & Manhong Shen & Chu Wei, 2022. "Abatement costs of combatting industrial water pollution: convergence across Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10752-10767, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1466-:d:914815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.