IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1398-d907044.html
   My bibliography  Save this article

Temporal and Spatial Positioning of Service Crops in Cereals Affects Yield and Weed Control

Author

Listed:
  • Elsa Lagerquist

    (Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden)

  • Alexander Menegat

    (Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden)

  • Anna Sigrun Dahlin

    (Department of Soil and Environment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden)

  • David Parsons

    (Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden)

  • Christine Watson

    (Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
    Department of Rural Land Use, Scotland’s Rural College, Aberdeen AB21 9YA, UK)

  • Per Ståhl

    (The Rural Economy and Agricultural Society, 58576 Vreta Kloster, Sweden)

  • Anita Gunnarsson

    (The Rural Economy and Agricultural Society, 29192 Kristianstad, Sweden)

  • Göran Bergkvist

    (Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden)

Abstract

Leguminous service crops (SCs) can provide multiple services to cropping systems, reducing the reliance on external resources if sufficient biomass is produced. However, rapid light and temperature reductions limit post-harvest cultivation of SCs in Northern Europe. A novel practice of intercropping SCs in two consecutive crops (spring–winter cereal) to extend the period of SCs growth, and hence improve yield and reduce weeds, was tested. Three spatial and temporal arrangements of SCs and cash crops were investigated, as well as three SC mixtures, characterized by their longevity and frost sensitivity. Compared to no SC, the best performing mixture, frost-tolerant annuals, increased grain and N yield of winter wheat by 10% and 19%, respectively, and reduced weed biomass by 15% and 26% in oats and winter wheat, respectively. These effects were attributed to high biomass production and winter survival. However, this SC reduced oat yields by 15% compared to no SC. Furthermore, SC growth and service provision varied largely between experiments, driven by the weather conditions. Extending the SC’s growth period by intercropping in two consecutive cereal crops has potential, but locally adapted species choices and establishment strategies are needed to ensure SC vitality until termination.

Suggested Citation

  • Elsa Lagerquist & Alexander Menegat & Anna Sigrun Dahlin & David Parsons & Christine Watson & Per Ståhl & Anita Gunnarsson & Göran Bergkvist, 2022. "Temporal and Spatial Positioning of Service Crops in Cereals Affects Yield and Weed Control," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1398-:d:907044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schipanski, Meagan E. & Barbercheck, Mary & Douglas, Margaret R. & Finney, Denise M. & Haider, Kristin & Kaye, Jason P. & Kemanian, Armen R. & Mortensen, David A. & Ryan, Matthew R. & Tooker, John & W, 2014. "A framework for evaluating ecosystem services provided by cover crops in agroecosystems," Agricultural Systems, Elsevier, vol. 125(C), pages 12-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lagerquist, Elsa & Vogeler, Iris & Kumar, Uttam & Bergkvist, Göran & Lana, Marcos & Watson, Christine A. & Parsons, David, 2024. "Assessing the effect of intercropped leguminous service crops on main crops and soil processes using APSIM NG," Agricultural Systems, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Kaletová & Luis Loures & Rui Alexandre Castanho & Elena Aydin & José Telo da Gama & Ana Loures & Amélie Truchy, 2019. "Relevance of Intermittent Rivers and Streams in Agricultural Landscape and Their Impact on Provided Ecosystem Services—A Mediterranean Case Study," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    2. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    3. Matthias Böldt & Friedhelm Taube & Iris Vogeler & Thorsten Reinsch & Christof Kluß & Ralf Loges, 2021. "Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling," Sustainability, MDPI, vol. 13(1), pages 1-22, January.
    4. Capmourteres, Virginia & Adams, Justin & Berg, Aaron & Fraser, Evan & Swanton, Clarence & Anand, Madhur, 2018. "Precision conservation meets precision agriculture: A case study from southern Ontario," Agricultural Systems, Elsevier, vol. 167(C), pages 176-185.
    5. Yoder, Landon & Houser, Matthew & Bruce, Analena & Sullivan, Abigail & Farmer, James, 2021. "Are climate risks encouraging cover crop adoption among farmers in the southern Wabash River Basin?," Land Use Policy, Elsevier, vol. 102(C).
    6. Bruno, Ilaria & Mania, Ilaria & Lovera, Matteo & Brondino, Luca & Peano, Cristiana, 2025. "Vegetation-based Ecological Functions Sustainability Index (VEFSI) for optimizing ecosystem services in orchards," Agricultural Systems, Elsevier, vol. 223(C).
    7. David W. Wolfe & Arthur T. DeGaetano & Gregory M. Peck & Mary Carey & Lewis H. Ziska & John Lea-Cox & Armen R. Kemanian & Michael P. Hoffmann & David Y. Hollinger, 2018. "Unique challenges and opportunities for northeastern US crop production in a changing climate," Climatic Change, Springer, vol. 146(1), pages 231-245, January.
    8. R. Michael Lehman & Cynthia A. Cambardella & Diane E. Stott & Veronica Acosta-Martinez & Daniel K. Manter & Jeffrey S. Buyer & Jude E. Maul & Jeffrey L. Smith & Harold P. Collins & Jonathan J. Halvors, 2015. "Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation," Sustainability, MDPI, vol. 7(1), pages 1-40, January.
    9. Drakopoulos, Dimitrios & Kägi, Andreas & Six, Johan & Zorn, Alexander & Wettstein, Felix E. & Bucheli, Thomas D. & Forrer, Hans-Rudolf & Vogelgsang, Susanne, 2021. "The agronomic and economic viability of innovative cropping systems to reduce Fusarium head blight and related mycotoxins in wheat," Agricultural Systems, Elsevier, vol. 192(C).
    10. Mewes, Melanie & Drechsler, Martin & Johst, Karin & Sturm, Astrid & Wätzold, Frank, 2015. "A systematic approach for assessing spatially and temporally differentiated opportunity costs of biodiversity conservation measures in grasslands," Agricultural Systems, Elsevier, vol. 137(C), pages 76-88.
    11. Theocharis Chatzistathis & Victor Kavvadias & Thomas Sotiropoulos & Ioannis E. Papadakis, 2021. "Organic Fertilization and Tree Orchards," Agriculture, MDPI, vol. 11(8), pages 1-20, July.
    12. Bowman, Maria & Ferraro, Paul J. & Fuller, Kate Binzen & Gramig, Benjamin & Mosheim, Roberto & Njuki, Eric & Pratt, Bryan & Rejesus, Roderick & Rosenberg, Andrew, 2025. "Economic Outcomes of Soil Health and Conservation Practices on U.S. Cropland," Economic Research Report 358985, United States Department of Agriculture, Economic Research Service.
    13. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    14. Villani, Lorenzo & Castelli, Giulio & Yimer, Estifanos Addisu & Nkwasa, Albert & Penna, Daniele & van Griensven, Ann & Bresci, Elena, 2024. "Exploring adaptive capacities in Mediterranean agriculture: Insights from Central Italy's Ombrone catchment," Agricultural Systems, Elsevier, vol. 216(C).
    15. Asai, Masayasu & Moraine, Marc & Ryschawy, Julie & de Wit, Jan & Hoshide, Aaron K. & Martin, Guillaume, 2018. "Critical factors for crop-livestock integration beyond the farm level: A cross-analysis of worldwide case studies," Land Use Policy, Elsevier, vol. 73(C), pages 184-194.
    16. Bullerjahn, George S. & McKay, Robert M. & Davis, Timothy W. & Baker, David B. & Boyer, Gregory L. & D'Anglada, Leslie V. & Doucette, Gregory J. & Ho, Jeff C. & Irwin, Elena G. & Kling, Catherine L. &, 2016. "Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study," ISU General Staff Papers 201601010800001134, Iowa State University, Department of Economics.
    17. Cerilli, Silvia & La Notte, Alessandra & Pisani, Domenico & Vallecillo, Sara & Tubiello, Francesco Nicola, 2020. "A sustainability scoreboard for crop provision in Europe," Ecosystem Services, Elsevier, vol. 46(C).
    18. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    19. Garba, Ismail I. & Bell, Lindsay W. & Chauhan, Bhagirath S. & Williams, Alwyn, 2024. "Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems," Agricultural Systems, Elsevier, vol. 214(C).
    20. Oliveira, Eduardo & Leuthard, Jasmin & Tobias, Silvia, 2019. "Spatial planning instruments for cropland protection in Western European countries," Land Use Policy, Elsevier, vol. 87(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1398-:d:907044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.