IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p1062-d867249.html
   My bibliography  Save this article

Assessing Machine Learning-Based Prediction under Different Agricultural Practices for Digital Mapping of Soil Organic Carbon and Available Phosphorus

Author

Listed:
  • Fuat Kaya

    (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32260, Türkiye)

  • Ali Keshavarzi

    (Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran)

  • Rosa Francaviglia

    (Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, 00184 Rome, Italy)

  • Gordana Kaplan

    (Institute of Earth and Space Sciences, Eskisehir Technical University, Eskisehir 26555, Türkiye)

  • Levent Başayiğit

    (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32260, Türkiye)

  • Mert Dedeoğlu

    (Department of Soil Science and Plant Nutrition, Agriculture Faculty, Selçuk University, Konya 42130, Türkiye)

Abstract

Predicting soil chemical properties such as soil organic carbon (SOC) and available phosphorus (Ava-P) content is critical in areas where different land uses exist. The distribution of SOC and Ava-P is influenced by both natural and anthropogenic factors. This study aimed at (1) predicting SOC and Ava-P in a piedmont plain of Northeast Iran using the Random Forests (RF) and Cubist mathematical models and hybrid models (Regression Kriging), (2) comparing the models’ results, and (3) identifying the key variables that influence the spatial dynamics of soil SOC and Ava-P under different agricultural practices. The machine learning models were trained with 201 composite surface soil samples and 24 ancillary data, including climate (C), organism (O), topography- relief (R), parent material (P) and key soil features (S) according to the SCORPAN digital soil mapping framework, which can predictively represent soil formation factors spatially. Clay, one of the most critical soil properties with a well-known relationship to SOC, was the most important predictor of SOC, followed by open-access multispectral satellite images-based vegetation and soil indices. Ava-P had a similar set of effective variables. Hybrid approaches did not improve model accuracy significantly, but they did reduce map uncertainty. In the validation set, Ava-P was calculated using the RF algorithm with a normalized root mean square (NRMSE) of 96.8, while SOC was calculated using the Cubist algorithm with an NRMSE of 94.2. These values did not change when using the hybrid technique for Ava-P; however, they changed just by 1% for SOC. The management of SOC content and the supply of Ava-P in agricultural activities can be guided by SOC and Ava-P digital distribution maps. Produced digital maps in which the soil scientist plays an active role can be used to identify areas where concentrations are high and need to be protected, where uncertainty is high and sampling is required for further monitoring.

Suggested Citation

  • Fuat Kaya & Ali Keshavarzi & Rosa Francaviglia & Gordana Kaplan & Levent Başayiğit & Mert Dedeoğlu, 2022. "Assessing Machine Learning-Based Prediction under Different Agricultural Practices for Digital Mapping of Soil Organic Carbon and Available Phosphorus," Agriculture, MDPI, vol. 12(7), pages 1-27, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1062-:d:867249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/1062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/1062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Qiang Song & Lian-An Yang & Bo Li & Yue-Ming Hu & An-Le Wang & Wu Zhou & Xue-Sen Cui & Yi-Lun Liu, 2017. "Spatial Prediction of Soil Organic Matter Using a Hybrid Geostatistical Model of an Extreme Learning Machine and Ordinary Kriging," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    2. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    3. Zihao Wu & Yaolin Liu & Guie Li & Yiran Han & Xiaoshun Li & Yiyun Chen, 2022. "Influences of Environmental Variables and Their Interactions on Chinese Farmland Soil Organic Carbon Density and Its Dynamics," Land, MDPI, vol. 11(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.
    2. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    3. Odunayo David Adeniyi & Hauwa Bature & Michael Mearker, 2024. "A Systematic Review on Digital Soil Mapping Approaches in Lowland Areas," Land, MDPI, vol. 13(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    5. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    6. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    7. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    8. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    9. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    10. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    11. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    12. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    13. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    14. Artur Łopatka & Grzegorz Siebielec & Radosław Kaczyński & Tomasz Stuczyński, 2023. "Analysis of Soil Carbon Stock Dynamics by Machine Learning—Polish Case Study," Land, MDPI, vol. 12(8), pages 1-14, August.
    15. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    16. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    17. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    18. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    19. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    20. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1062-:d:867249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.