IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i6p851-d837348.html
   My bibliography  Save this article

Economic and Environmental Assessment of Olive Agroforestry Practices in Northern Greece

Author

Listed:
  • Emmanouil Tziolas

    (Department of Marine Fisheries, Fisheries Research Institute (FRI), Hellenic Agricultural Organization “DIMITRA”, Nea Peramos, 64007 Kavala, Greece)

  • Stefanos Ispikoudis

    (Department of Forestry and Natural Environment Management, Agricultural University of Athens, 36100 Karpenissi, Greece)

  • Konstantinos Mantzanas

    (Laboratory of Rangeland Ecology, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitrios Koutsoulis

    (Independent Researcher, 63077 Chalkidiki, Greece)

  • Anastasia Pantera

    (Department of Forestry and Natural Environment Management, Agricultural University of Athens, 36100 Karpenissi, Greece)

Abstract

Preservation and promotion of agroforestry systems entails the ideology for more ecosystem services, additional biodiversity benefits and climate change mitigation. Furthermore, farmland and forest landscapes and the consequent benefits to the environment from their combination, enhance the importance of agroforestry systems towards sustainable environmental policies. Nevertheless, traditional agroforestry systems face significant adaptation problems, especially in the EU, due to continuous economic reforms and strict agri-environmental measures. In this context our main goal is to assess the current managerial framework of two agroforestry systems and more specifically the olive agroforestry practices in Northern Greece. The economic and environmental implications of four different production plans are highlighted following the Life Cycle Costing and the Life Cycle Assessment protocols. The production plans include the simultaneous cultivation of annual crops, such as vetch and barley, along with olive groves. Potential environmental impacts are depicted in CO 2 equivalents, while the economic allocation of costs is divided in targeted categories (e.g., raw materials, labor, land rent, etc.). The results indicate significant deviations among the four production plans, with the combination of olive trees and barley being heavily dependent on fertilization. Furthermore, the open-spaced olive trees intercropped with a mixture of barley and commonly depicted the lowest CO 2 eq. emissions, though the economic cost was significantly higher than the other agroforestry system intercropped with barley only. The authors suggest that the formulation of a decision support system for agroforestry systems should be taken into account in order to preserve current agroforestry systems.

Suggested Citation

  • Emmanouil Tziolas & Stefanos Ispikoudis & Konstantinos Mantzanas & Dimitrios Koutsoulis & Anastasia Pantera, 2022. "Economic and Environmental Assessment of Olive Agroforestry Practices in Northern Greece," Agriculture, MDPI, vol. 12(6), pages 1-15, June.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:851-:d:837348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/6/851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/6/851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lisa Mølgaard Lehmann & Jo Smith & Sally Westaway & Andrea Pisanelli & Giuseppe Russo & Robert Borek & Mignon Sandor & Adrian Gliga & Laurence Smith & Bhim Bahadur Ghaley, 2020. "Productivity and Economic Evaluation of Agroforestry Systems for Sustainable Production of Food and Non-Food Products," Sustainability, MDPI, vol. 12(13), pages 1-9, July.
    2. Martinelli, Gabrielli do Carmo & Schlindwein, Madalena Maria & Padovan, Milton Parron & Vogel, Everton & Ruviaro, Clandio Favarini, 2019. "Environmental performance of agroforestry systems in the Cerrado biome, Brazil," World Development, Elsevier, vol. 122(C), pages 339-348.
    3. Ben-Arieh, David & Qian, Li, 2003. "Activity-based cost management for design and development stage," International Journal of Production Economics, Elsevier, vol. 83(2), pages 169-183, February.
    4. Emmanouil Tziolas & Basil Manos & Thomas Bournaris, 2017. "Planning of agro-energy districts for optimum farm income and biomass energy from crops residues," Operational Research, Springer, vol. 17(2), pages 535-546, July.
    5. Elena Tamburini & Paola Pedrini & Maria Gabriella Marchetti & Elisa Anna Fano & Giuseppe Castaldelli, 2015. "Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area," Sustainability, MDPI, vol. 7(3), pages 1-21, March.
    6. Anita Konieczna & Kamil Roman & Kinga Borek & Emilia Grzegorzewska, 2021. "GHG and NH 3 Emissions vs. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms; a Further Study," Energies, MDPI, vol. 14(17), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Marotti & Anne Whittaker & Reyhan Bahtiyarca Bağdat & Pervin Ari Akin & Namuk Ergün & Giovanni Dinelli, 2023. "Intercropping Perennial Fruit Trees and Annual Field Crops with Aromatic and Medicinal Plants (MAPs) in the Mediterranean Basin," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    2. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Chris Lytridis & Spyridon Mamalis & Stefanos Koundouras & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Comparative Assessment of Environmental/Energy Performance under Conventional Labor and Collaborative Robot Scenarios in Greek Viticulture," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
    3. Emmanouil Tziolas & Eleftherios Karapatzak & Ioannis Kalathas & Aikaterini Karampatea & Antonios Grigoropoulos & Aadil Bajoub & Theodore Pachidis & Vassilis G. Kaburlasos, 2023. "Assessing the Economic Performance of Multipurpose Collaborative Robots toward Skillful and Sustainable Viticultural Practices," Sustainability, MDPI, vol. 15(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gori Maia, Alexandre & Eusebio, Gabriela dos Santos & Fasiaben, Maria do Carmo Ramos & Moraes, Andre Steffens & Assad, Eduardo Delgado & Pugliero, Vanessa Silva, 2021. "The economic impacts of the diffusion of agroforestry in Brazil," Land Use Policy, Elsevier, vol. 108(C).
    2. Thyssen, Jesper & Israelsen, Poul & Jorgensen, Brian, 2006. "Activity-based costing as a method for assessing the economics of modularization--A case study and beyond," International Journal of Production Economics, Elsevier, vol. 103(1), pages 252-270, September.
    3. Fabio Magnacca & Riccardo Giannetti, 2024. "Management accounting and new product development: a systematic literature review and future research directions," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 28(2), pages 651-685, June.
    4. Thiesmeier, Alma & Zander, Peter, 2023. "Can agroforestry compete? A scoping review of the economic performance of agroforestry practices in Europe and North America," Forest Policy and Economics, Elsevier, vol. 150(C).
    5. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    6. Annalisa De Boni & Antonia D’Amico & Claudio Acciani & Rocco Roma, 2022. "Crop Diversification and Resilience of Drought-Resistant Species in Semi-Arid Areas: An Economic and Environmental Analysis," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    7. Leah Grout & Simon Hales & Nigel French & Michael G. Baker, 2018. "A Review of Methods for Assessing the Environmental Health Impacts of an Agricultural System," IJERPH, MDPI, vol. 15(7), pages 1-27, June.
    8. Askarany, Davood & Yazdifar, Hassan, 2012. "An investigation into the mixed reported adoption rates for ABC: Evidence from Australia, New Zealand and the UK," International Journal of Production Economics, Elsevier, vol. 135(1), pages 430-439.
    9. Lu Li & Huaiqiang Liu & Taogetao Baoyin, 2022. "Mowing Increases Root-to-Shoot Ratio but Decreases Soil Organic Carbon Storage and Microbial Biomass C in a Semiarid Grassland of North China," Agriculture, MDPI, vol. 12(9), pages 1-15, August.
    10. Viviana Ferrario, 2021. "Learning from Agricultural Heritage? Lessons of Sustainability from Italian “Coltura Promiscua”," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    11. Vogel, Everton & Beber, Caetano Luiz, 2021. "Sustainable Intensification Strategies for GHG Mitigation Among Heterogeneous Dairy Farms in Paraná, Brazil," 2021 Conference, August 17-31, 2021, Virtual 315219, International Association of Agricultural Economists.
    12. Yadira Vargas-Tierras & Alejandra Díaz & Carlos Caicedo & Julio Macas & Alfonso Suárez-Tapia & William Viera, 2021. "Benefits of Legume Species in an Agroforestry Production System of Yellow Pitahaya in the Ecuadorian Amazon," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    13. Qian, Li & Ben-Arieh, David, 2008. "Parametric cost estimation based on activity-based costing: A case study for design and development of rotational parts," International Journal of Production Economics, Elsevier, vol. 113(2), pages 805-818, June.
    14. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    15. Christina Moulogianni & Thomas Bournaris, 2017. "Biomass Production from Crops Residues: Ranking of Agro-Energy Regions," Energies, MDPI, vol. 10(7), pages 1-12, July.
    16. Thyssen, Jesper & Israelsen, Poul & Jørgensen, Brian, 2005. "Activity Based Costing as a method for assessing the economics of modularization - a case study and beyond," Management Accounting Research Group Working Papers M-2005-04, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    17. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Prapita Thanarak & Teerarat Chiramakara, 2019. "GHG Emission and Cost Performance of Life Cycle Energy on Agricultural Land Used for Photovoltaic Power Plant," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 156-165.
    19. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    20. Homburg, Carsten, 2005. "Using relative profits as an alternative to activity-based costing," International Journal of Production Economics, Elsevier, vol. 95(3), pages 387-397, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:6:p:851-:d:837348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.