IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i7p658-d593163.html
   My bibliography  Save this article

Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study

Author

Listed:
  • Subin Mattara Chalill

    (Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai P.O. Box 345055, United Arab Emirates)

  • Snehaunshu Chowdhury

    (Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai P.O. Box 345055, United Arab Emirates)

  • Ramanujam Karthikeyan

    (Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai P.O. Box 345055, United Arab Emirates)

Abstract

Controlled crop growth parameters, such as average air velocity, air temperature, and relative humidity (RH), inside the greenhouse are necessary prerequisites for commercial greenhouse operation. Frequent overshoots of such parameters are noticed in the Middle East. Traditional heating ventilation and air-conditioning (HVAC) systems in such greenhouses use axial fans and evaporative cooling pads to control the temperature. Such systems fail to respond to the extreme heat load variations during the day. In this study, we present the design and implementation of a single span, commercial greenhouse using box type evaporative coolers (BTEC) as the backbone of the HVAC system. The HVAC system is run by a fully-automated real time feedback-based climate management system (CMS). A full-scale, steady state computational fluid dynamics (CFD) simulation of the greenhouse is carried out assuming peak summer outdoor conditions. A pilot study is conducted to experimentally monitor the environmental parameters in the greenhouse over a 20-h period. The recorded data confirm that the crop growth parameters lie within their required ranges, indicating a successful design and implementation phase of the commercial greenhouse on a pilot scale.

Suggested Citation

  • Subin Mattara Chalill & Snehaunshu Chowdhury & Ramanujam Karthikeyan, 2021. "Prediction of Key Crop Growth Parameters in a Commercial Greenhouse Using CFD Simulation and Experimental Verification in a Pilot Study," Agriculture, MDPI, vol. 11(7), pages 1-23, July.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:658-:d:593163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/7/658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/7/658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kangji Li & Wenping Xue & Hanping Mao & Xu Chen & Hui Jiang & Gang Tan, 2019. "Optimizing the 3D Distributed Climate inside Greenhouses Using Multi-Objective Optimization Algorithms and Computer Fluid Dynamics," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Jiaming Guo & Yanhua Liu & Enli Lü, 2019. "Numerical Simulation of Temperature Decrease in Greenhouses with Summer Water-Sprinkling Roof," Energies, MDPI, vol. 12(12), pages 1-15, June.
    3. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    4. Antonio Franco & Diego L. Valera & Araceli Peña, 2014. "Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads," Energies, MDPI, vol. 7(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    2. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    3. Di Qi & Chuangyao Zhao & Shixiong Li & Ran Chen & Angui Li, 2021. "Numerical Assessment of Earth to Air Heat Exchanger with Variable Humidity Conditions in Greenhouses," Energies, MDPI, vol. 14(5), pages 1-18, March.
    4. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    5. Zhang, Kai & Yu, Jihua & Ren, Yan, 2022. "Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses," Renewable Energy, Elsevier, vol. 182(C), pages 536-551.
    6. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    7. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    8. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    9. Yaghoubi, Jafar & Yazdanpanah, Masoud & Komendantova, Nadejda, 2019. "Iranian agriculture advisors' perception and intention toward biofuel: Green way toward energy security, rural development and climate change mitigation," Renewable Energy, Elsevier, vol. 130(C), pages 452-459.
    10. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    11. Xia, Tianyang & Li, Yiming & Sun, Zhouping & Wan, Xiuchao & Sun, Dapeng & Wang, Lu & Liu, Xingan & Li, Tianlai, 2023. "Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions," Applied Energy, Elsevier, vol. 332(C).
    12. Anifantis, Alexandros Sotirios & Colantoni, Andrea & Pascuzzi, Simone, 2017. "Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating," Renewable Energy, Elsevier, vol. 103(C), pages 115-127.
    13. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Chiara Bersani & Ahmed Ouammi & Roberto Sacile & Enrico Zero, 2020. "Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption," Energies, MDPI, vol. 13(14), pages 1-17, July.
    15. Araceli Peña-Fernández & Manuel A. Colón-Reynoso & Pilar Mazuela, 2024. "Geometric Analysis of Greenhouse Roofs for Energy Efficiency Optimization and Condensation Drip Reduction," Agriculture, MDPI, vol. 14(2), pages 1-17, January.
    16. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    17. Abohorlu Doğramacı, Pervin & Riffat, Saffa & Gan, Guohui & Aydın, Devrim, 2019. "Experimental study of the potential of eucalyptus fibres for evaporative cooling," Renewable Energy, Elsevier, vol. 131(C), pages 250-260.
    18. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    19. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    20. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:658-:d:593163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.