IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p379-d541700.html
   My bibliography  Save this article

Segregation Distortion for Male Parents in High Density Genetic Maps from Reciprocal Crosses between Two Self-Incompatible Cultivars Confirms a Gametophytic System for Self-Incompatibility in Citrus

Author

Listed:
  • Patrick Ollitrault

    (CIRAD, UMR AGAP, F-20230 San Giuliano, France
    UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France)

  • Dalel Ahmed

    (UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France)

  • Gilles Costantino

    (UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France)

  • Jean-Charles Evrard

    (CIRAD, UMR AGAP, F-20230 San Giuliano, France
    UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France)

  • Celine Cardi

    (CIRAD, UMR AGAP, F-20230 San Giuliano, France
    UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France)

  • Pierre Mournet

    (CIRAD, UMR AGAP, F-20230 San Giuliano, France
    UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France)

  • Aude Perdereau

    (Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, 91000 Evry, France)

  • Yann Froelicher

    (CIRAD, UMR AGAP, F-20230 San Giuliano, France
    UMR AGAP, Université Montpellier, CIRAD, INRAE, Institut Agro, 34060 Montpellier, France)

Abstract

Self-incompatibility is an important evolutionary feature in angiosperms and has major implications for breeding strategies in horticultural crops. In citrus, when coupled with parthenocarpy, it enables the production of seedless fruits in a mono-varietal orchard. A gametophytic incompatibility system with one S locus was proposed for citrus, but its molecular mechanisms remain the subject of debate. The objective of this work was to locate the S locus by the analyzing segregation distortion in reciprocal crosses of two self-incompatible citrus sharing one self-incompatible allele and to compare this location with previously published models. High density genetic maps of ‘Fortune’ mandarin and ‘Ellendale tangor’ with, respectively, 2164 SNP and 1467 SNP markers, were constructed using genotyping by sequencing data. They are highly syntenic and collinear with the clementine genome. Complete rejection of one allele was only observed in male segregation in the two parents and in only one genomic area, at the beginning of chromosome 7 of the clementine reference genome. Haplotype data in the area surrounding the theoretical S locus were in agreement with previously proposed S genotypes. Overall, our results are in full agreement with the recently proposed gametophytic S-RNase system with the S locus at the beginning of chromosome 7 of the clementine reference genome.

Suggested Citation

  • Patrick Ollitrault & Dalel Ahmed & Gilles Costantino & Jean-Charles Evrard & Celine Cardi & Pierre Mournet & Aude Perdereau & Yann Froelicher, 2021. "Segregation Distortion for Male Parents in High Density Genetic Maps from Reciprocal Crosses between Two Self-Incompatible Cultivars Confirms a Gametophytic System for Self-Incompatibility in Citrus," Agriculture, MDPI, vol. 11(5), pages 1-21, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:379-:d:541700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Montalt & Laura Prósper & María Carmen Vives & Luis Navarro & Patrick Ollitrault & Pablo Aleza, 2022. "Breakdown of Self-Incompatibility in Citrus by Temperature Stress, Bud Pollination and Polyploidization," Agriculture, MDPI, vol. 12(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    2. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    3. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    4. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    5. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    6. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    7. Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
    8. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    9. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    10. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    11. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    12. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    13. Mark Rempel, 2016. "Improving Overnight Loan Identification in Payments Systems," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 549-564, March.
    14. Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2015.
    15. Nucera, Federico & Valente, Giorgio, 2013. "Carry trades and the performance of currency hedge funds," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 407-425.
    16. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
    17. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    18. Iain Melvin & Jason Weston & William Stafford Noble & Christina Leslie, 2011. "Detecting Remote Evolutionary Relationships among Proteins by Large-Scale Semantic Embedding," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-8, January.
    19. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    20. Zhang Fang & Shan Ang & Luan Yihui, 2018. "A novel method to accurately calculate statistical significance of local similarity analysis for high-throughput time series," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(6), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:379-:d:541700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.