IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i4p333-d532242.html
   My bibliography  Save this article

Mycorrhizal Inoculation Improves Mineral Content of Organic Potatoes Grown under Calcareous Soil

Author

Listed:
  • Sara Lombardo

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Aurelio Scavo

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Cristina Abbate

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Gaetano Pandino

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Bruno Parisi

    (Research Centre for Cereal and Industrial Crops (CREA-CI), Via di Corticella, 133-40128 Bologna, Italy)

  • Giovanni Mauromicale

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

Abstract

Soil mycorrhization can play an important role for the qualitative improvement of organically grown “early” potato tubers especially in low fertility soils (such as calcareous ones), by ameliorating plant uptake of limiting mineral nutrients in the soil. Hence, the objective of the present research was to elucidate the impact of soil mycorrhization on the tuber minerals content of three potato cultivars organically grown in two locations with different soil characteristics. Our data revealed the keyrole of soil mycorrhization on the tuber accumulation of Na, Cu, Mn, and P and on reducing the Na/K ratio, although the effects of soil mycorrhization were cultivar- and location-dependent. Accordingly, soil mycorrhization was able to enhance the levels of K and Ca in ‘Arizona’ and that of Mn in ‘Universa’, while it increased the Zn amount in all the cultivars under study. Additionally, soil mycorrhization significantly improved the levels of Cu and Mn in tubers in the location characterized by an initial higher soil level of these micro-minerals. This work highlighted the possibility to fortify organic early potato tubers, in terms of macro- and micro-mineral elements, by applying an eco-sustainable tool such as soil mycorrhization, provided that specific consideration is given to cultivar choice and soil characteristics.

Suggested Citation

  • Sara Lombardo & Aurelio Scavo & Cristina Abbate & Gaetano Pandino & Bruno Parisi & Giovanni Mauromicale, 2021. "Mycorrhizal Inoculation Improves Mineral Content of Organic Potatoes Grown under Calcareous Soil," Agriculture, MDPI, vol. 11(4), pages 1-13, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:333-:d:532242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/4/333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/4/333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    2. Gaetano Pandino & Emanuela Mattiolo & Sara Lombardo & Grazia Maria Lombardo & Giovanni Mauromicale, 2020. "Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat," Agriculture, MDPI, vol. 10(2), pages 1-14, February.
    3. Miguel A. Altieri & Clara I. Nicholls & Rene Montalba, 2017. "Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective," Sustainability, MDPI, vol. 9(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Andrea Colantoni & Lucia Recchia & Guido Bernabei & Mariateresa Cardarelli & Youssef Rouphael & Giuseppe Colla, 2017. "Analyzing the Environmental Impact of Chemically-Produced Protein Hydrolysate from Leather Waste vs. Enzymatically-Produced Protein Hydrolysate from Legume Grains," Agriculture, MDPI, vol. 7(8), pages 1-9, July.
    3. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    4. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    6. Ishwari Singh Bisht & Jai Chand Rana & Sudhir Pal Ahlawat, 2020. "The Future of Smallholder Farming in India: Some Sustainability Considerations," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    7. Danuta Leszczyńska & Agnieszka Klimek-Kopyra & Krzysztof Patkowski, 2020. "Evaluation of the Productivity of New Spring Cereal Mixture to Optimize Cultivation under Different Soil Conditions," Agriculture, MDPI, vol. 10(8), pages 1-13, August.
    8. Matthew C. LaFevor & Aoife K. Pitts, 2022. "Irrigation Increases Crop Species Diversity in Low-Diversity Farm Regions of Mexico," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    9. Conrad Baker & Albert Thembinkosi Modi & Adornis D. Nciizah, 2021. "Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area," Sustainability, MDPI, vol. 13(21), pages 1-15, November.
    10. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    12. Rita Biasi & Roberta Farina & Elena Brunori, 2021. "Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    13. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    14. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).
    15. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Hassan Afzaal & Aitazaz A. Farooque & Farhat Abbas & Bishnu Acharya & Travis Esau, 2020. "Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    17. Vladan Ugrenović & Vera Popović & Milan Ugrinović & Vladimir Filipović & Ksenija Mačkić & Nataša Ljubičić & Slobodan Popović & Željko Lakić, 2021. "Black Oat ( Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments," Agriculture, MDPI, vol. 11(1), pages 1-14, January.
    18. Cristiana Peano & Stefano Massaglia & Chiara Ghisalberti & Francesco Sottile, 2020. "Pathways for the Amplification of Agroecology in African Sustainable Urban Agriculture," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
    19. Hamid El Bilali, 2019. "The Multi-Level Perspective in Research on Sustainability Transitions in Agriculture and Food Systems: A Systematic Review," Agriculture, MDPI, vol. 9(4), pages 1-24, April.
    20. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:333-:d:532242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.