IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p477-d428476.html
   My bibliography  Save this article

Assessment of Water Needs of Grapevines in Western Poland from the Perspective of Climate Change

Author

Listed:
  • Barbara Jagosz

    (Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-120 Krakow, Poland)

  • Stanisław Rolbiecki

    (Department of Agrometeorology, Plant Irrigation and Horticulture, Faculty of Agriculture and Biotechnology, University of Science and Technology in Bydgoszcz, 85-029 Bydgoszcz, Poland)

  • Piotr Stachowski

    (Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, 60-649 Poznań, Poland)

  • Wiesław Ptach

    (Department of Engineering and Geodesy, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, 02-776 Warszawa, Poland)

  • Ariel Łangowski

    (Department of Agrometeorology, Plant Irrigation and Horticulture, Faculty of Agriculture and Biotechnology, University of Science and Technology in Bydgoszcz, 85-029 Bydgoszcz, Poland)

  • Wiesława Kasperska-Wołowicz

    (Institute of Technology and Life Sciences, Kuyavian-Pomeranian Research Centre, 85-174 Bydgoszcz, Poland)

  • Hicran A. Sadan

    (Department of Agrometeorology, Plant Irrigation and Horticulture, Faculty of Agriculture and Biotechnology, University of Science and Technology in Bydgoszcz, 85-029 Bydgoszcz, Poland)

  • Roman Rolbiecki

    (Department of Agrometeorology, Plant Irrigation and Horticulture, Faculty of Agriculture and Biotechnology, University of Science and Technology in Bydgoszcz, 85-029 Bydgoszcz, Poland)

  • Piotr Prus

    (Department of Economics and Counseling in Agribusiness, Faculty of Agriculture and Biotechnology, University of Science and Technology in Bydgoszcz, 85-029 Bydgoszcz, Poland)

  • Maciej J. Kazula

    (College of Food, Agricultural & Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA)

Abstract

Climate changes lead to a rise in air temperature, which significantly increases the water needs of plants. Maintaining crop productivity will increasingly require the use of plant irrigation. The aim of this study was to assess the water needs of grapevines cultivated in the western provinces of Poland. The calculations were made on the basis of temperature and precipitation measurements collected at three meteorological stations in the period 1981–2010. Water needs were calculated as crop evapotranspiration, which was estimated by crop coefficients and reference evapotranspiration, determined using the Blaney–Criddle formula. The rainfall deficit was assessed by Ostromęcki’s method. The tendency to increase the water needs was observed in each subsequent decade of the thirty-year period, both in the whole growing season (May–October), as well as in June–August and July. The highest values of the linear correlation coefficient for the trend of time variability in water needs occurred from June to August. An analysis of water needs and rainfall deficits indicates the need for the additional irrigation of vineyards in western Poland, especially in very dry years and in June–August. Current research results are helpful in designing vineyard irrigation systems and allow an economical and efficient planning of grapevine irrigation.

Suggested Citation

  • Barbara Jagosz & Stanisław Rolbiecki & Piotr Stachowski & Wiesław Ptach & Ariel Łangowski & Wiesława Kasperska-Wołowicz & Hicran A. Sadan & Roman Rolbiecki & Piotr Prus & Maciej J. Kazula, 2020. "Assessment of Water Needs of Grapevines in Western Poland from the Perspective of Climate Change," Agriculture, MDPI, vol. 10(10), pages 1-16, October.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:477-:d:428476
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. B. Webb & P. H. Whetton & J. Bhend & R. Darbyshire & P. R. Briggs & E. W. R. Barlow, 2012. "Earlier wine-grape ripening driven by climatic warming and drying and management practices," Nature Climate Change, Nature, vol. 2(4), pages 259-264, April.
    2. Acevedo-Opazo, C. & Ortega-Farias, S. & Fuentes, S., 2010. "Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 956-964, July.
    3. M. Moriondo & G. Jones & B. Bois & C. Dibari & R. Ferrise & G. Trombi & M. Bindi, 2013. "Projected shifts of wine regions in response to climate change," Climatic Change, Springer, vol. 119(3), pages 825-839, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Rolbiecki & Małgorzata Biniak-Pieróg & Andrzej Żyromski & Wiesława Kasperska-Wołowicz & Barbara Jagosz & Piotr Stachowski & Daniel Liberacki & Ewa Kanecka-Geszke & Hicran A. Sadan & Roman Ro, 2021. "Effect of Forecast Climate Changes on Water Needs of Giant Miscanthus Cultivated in the Kuyavia Region in Poland," Energies, MDPI, vol. 14(20), pages 1-13, October.
    2. Alba Piña-Rey & Estefanía González-Fernández & María Fernández-González & Mª. Nieves Lorenzo & Fco. Javier Rodríguez-Rajo, 2020. "Climate Change Impacts Assessment on Wine-Growing Bioclimatic Transition Areas," Agriculture, MDPI, vol. 10(12), pages 1-21, December.
    3. Stanisław Rolbiecki & Roman Rolbiecki & Renata Kuśmierek-Tomaszewska & Jacek Żarski & Barbara Jagosz & Wiesława Kasperska-Wołowicz & Hicran Sadan & Ariel Łangowski, 2023. "Influence of Forecast Climate Changes on Water Needs of Jerusalem Artichoke Grown in the Kuyavia Region in Poland," Energies, MDPI, vol. 16(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonfante, A. & Alfieri, S.M. & Albrizio, R. & Basile, A. & De Mascellis, R. & Gambuti, A. & Giorio, P. & Langella, G. & Manna, P. & Monaco, E. & Moio, L. & Terribile, F., 2017. "Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy," Agricultural Systems, Elsevier, vol. 152(C), pages 100-109.
    2. Inês L. Cabral & Anabela Carneiro & Tiago Nogueira & Jorge Queiroz, 2021. "Regulated Deficit Irrigation and Its Effects on Yield and Quality of Vitis vinifera L., Touriga Francesa in a Hot Climate Area (Douro Region, Portugal)," Agriculture, MDPI, vol. 11(8), pages 1-16, August.
    3. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    4. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    5. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    6. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    8. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    9. Alejandra Engler & Roberto Jara-Rojas & Carlos Bopp, 2016. "Efficient use of Water Resources in Vineyards: A Recursive joint Estimation for the Adoption of Irrigation Technology and Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5369-5383, November.
    10. Loïc Henry, 2023. "Adapting the designated area of geographical indications to climate change," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1088-1115, August.
    11. Zarrouk, Olfa & Francisco, Rita & Pinto-Marijuan, Marta & Brossa, Ricard & Santos, Raquen Raissa & Pinheiro, Carla & Costa, Joaquim Miguel & Lopes, Carlos & Chaves, Maria Manuela, 2012. "Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine," Agricultural Water Management, Elsevier, vol. 114(C), pages 18-29.
    12. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Sebastian, Bárbara & Lissarrague, José R. & Santesteban, Luis G. & Linares, Rubén & Junquera, Pedro & Baeza, Pilar, 2016. "Effect of irrigation frequency and water distribution pattern on leaf gas exchange of cv. ‘Syrah’ grown on a clay soil at two levels of water availability," Agricultural Water Management, Elsevier, vol. 177(C), pages 410-418.
    14. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    15. Kym Anderson, 2019. "Evolving Varietal and Quality Distinctiveness of Australia’s Wine Regions," World Scientific Book Chapters, in: Kym Anderson (ed.), The International Economics of Wine, chapter 24, pages 599-628, World Scientific Publishing Co. Pte. Ltd..
    16. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    18. Chen, Rui & Chang, Hongda & Wang, Zhenhua & Lin, Haixia, 2023. "Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China," Agricultural Water Management, Elsevier, vol. 276(C).
    19. Heiko Paeth & Daniel Schönbein & Luzia Keupp & Daniel Abel & Freddy Bangelesa & Miriam Baumann & Christian Büdel & Christian Hartmann & Christof Kneisel & Konstantin Kobs & Julian Krause & Martin Krec, 2023. "Climate change information tailored to the agricultural sector in Central Europe, exemplified on the region of Lower Franconia," Climatic Change, Springer, vol. 176(10), pages 1-24, October.
    20. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:477-:d:428476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.