IDEAS home Printed from https://ideas.repec.org/a/gam/jadmsc/v13y2023i2p57-d1066803.html
   My bibliography  Save this article

Dynamic Pricing Models and Negotiating Agents: Developments in Management Accounting

Author

Listed:
  • Edgard Bruno Cornacchione

    (School of Economics, Management and Accounting, University of Sao Paulo, Prof Luciano Gualberto Ave 908, Sao Paulo 05508-010, Brazil)

  • Luciane Reginato

    (School of Economics, Management and Accounting, University of Sao Paulo, Prof Luciano Gualberto Ave 908, Sao Paulo 05508-010, Brazil)

  • Joshua Onome Imoniana

    (School of Economics, Management and Accounting, University of Sao Paulo, Prof Luciano Gualberto Ave 908, Sao Paulo 05508-010, Brazil)

  • Marcelo Souza

    (FIPECAFI (A Fundação Instituto de Pesquisas Contábeis, Atuariais e Financeiras), R. Maestro Cardim 1170, Bela Vista, Sao Paulo 01323-001, Brazil)

Abstract

Linking decision systems, negotiating agents, management accounting, and computational accounting, this paper aims at exploring dynamic pricing strategies of a synthetic business-to-consumer online operation and a comparative analysis of evolving strategy-specific pricing optimization. Five price models based on market, utility, or demand information (three single and two combined), merging online and offline data, are explored over a seven-day period and with twenty selected products. A total of 17,529 website visits and 538 agent negotiations are studied (94,607 main data points) using a Python solution, with model simulation parameters and assumptions described. Findings show the combined market-utility-demand performance of dynamic pricing to be superior as an input to the negotiating agent. Contributions are threefold, pointing to (a) management accounting practice and research (dynamic pricing), (b) science and research strategy (method), and (c) accounting education (skill set).

Suggested Citation

  • Edgard Bruno Cornacchione & Luciane Reginato & Joshua Onome Imoniana & Marcelo Souza, 2023. "Dynamic Pricing Models and Negotiating Agents: Developments in Management Accounting," Administrative Sciences, MDPI, vol. 13(2), pages 1-16, February.
  • Handle: RePEc:gam:jadmsc:v:13:y:2023:i:2:p:57-:d:1066803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2076-3387/13/2/57/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2076-3387/13/2/57/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris K. Anderson & Xiaoqing (Kristine) Xie, 2016. "Dynamic pricing in hospitality: overview and opportunities," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 9(2/3), pages 165-174.
    2. Friederike Wall & Stephan Leitner, 2020. "Agent-based Computational Economics in Management Accounting Research: Opportunities and Difficulties," Papers 2011.03297, arXiv.org.
    3. Ante Farm, 2020. "Pricing in practice in consumer markets," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 43(1), pages 61-75, January.
    4. Constantinos Maglaras & Joern Meissner, 2006. "Dynamic Pricing Strategies for Multiproduct Revenue Management Problems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 136-148, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grigoriev, A. & Hiller, B. & Marban, S. & Vredeveld, T. & van der Zwaan, G.R.J., 2010. "Dynamic pricing problems with elastic demand," Research Memorandum 053, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. Aniruddha Dutta, 2019. "Capacity Allocation of Game Tickets Using Dynamic Pricing," Data, MDPI, vol. 4(4), pages 1-12, October.
    3. Yiwei Chen & Nikolaos Trichakis, 2021. "Technical Note—On Revenue Management with Strategic Customers Choosing When and What to Buy," Operations Research, INFORMS, vol. 69(1), pages 175-187, January.
    4. Dario Blanco-Fernandez & Stephan Leitner & Alexandra Rausch, 2022. "Interactions between the individual and the group level in organizations: The case of learning and autonomous group adaptation," Papers 2203.09162, arXiv.org.
    5. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    6. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    7. Püschel, Tim & Schryen, Guido & Hristova, Diana & Neumann, Dirk, 2015. "Revenue management for Cloud computing providers: Decision models for service admission control under non-probabilistic uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 637-647.
    8. Dongdong Yu & Miyu Wan & Chunlin Luo, 2022. "Dynamic pricing and dual‐channel choice in the presence of strategic consumers," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2392-2408, September.
    9. Yanzhe (Murray) Lei & Stefanus Jasin & Amitabh Sinha, 2018. "Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 269-284, May.
    10. Ødegaard, Fredrik & Wilson, John G., 2016. "Dynamic pricing of primary products and ancillary services," European Journal of Operational Research, Elsevier, vol. 251(2), pages 586-599.
    11. Kyoung-Kuk Kim & Chi-Guhn Lee & Sunggyun Park, 2016. "Dynamic pricing with ‘BOGO’ promotion in revenue management," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5283-5302, September.
    12. Sato, Kimitoshi, 2019. "Price Trends and Dynamic Pricing in Perishable Product Market Consisting of Superior and Inferior Firms," European Journal of Operational Research, Elsevier, vol. 274(1), pages 214-226.
    13. Ravshanbek Khodzhimatov & Stephan Leitner & Friederike Wall, 2022. "Controlling replication via the belief system in multi-unit organizations," Papers 2206.03786, arXiv.org.
    14. Kuo, Chia-Wei & Huang, Kwei-Long, 2012. "Dynamic pricing of limited inventories for multi-generation products," European Journal of Operational Research, Elsevier, vol. 217(2), pages 394-403.
    15. Patrick Reinwald & Stephan Leitner & Friederike Wall, 2021. "Effects of limited and heterogeneous memory in hidden-action situations," Papers 2105.12469, arXiv.org.
    16. Sun, Bo & Sun, Xu & Tsang, Danny H.K. & Whitt, Ward, 2019. "Optimal battery purchasing and charging strategy at electric vehicle battery swap stations," European Journal of Operational Research, Elsevier, vol. 279(2), pages 524-539.
    17. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    18. Guillermo Gallego & Ming Hu, 2014. "Dynamic Pricing of Perishable Assets Under Competition," Management Science, INFORMS, vol. 60(5), pages 1241-1259, May.
    19. Will Ma & David Simchi-Levi & Chung-Piaw Teo, 2021. "On Policies for Single-Leg Revenue Management with Limited Demand Information," Operations Research, INFORMS, vol. 69(1), pages 207-226, January.
    20. Burkart, Wolfgang R. & Klein, Robert & Mayer, Stefan, 2012. "Product line pricing for services with capacity constraints and dynamic substitution," European Journal of Operational Research, Elsevier, vol. 219(2), pages 347-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jadmsc:v:13:y:2023:i:2:p:57-:d:1066803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.