IDEAS home Printed from https://ideas.repec.org/a/fau/fauart/v62y2012i2p162-179.html
   My bibliography  Save this article

Market Application of the Fuzzy-Stochastic Approach in the Heston Option Pricing Model

Author

Abstract

The present study analyzes the extra insights that option pricing models may achieve when uncertainty about parameters is modeled through fuzzy numbers. Specifically, the authors consider the Heston stochastic volatility model, which assumes that stock price changes and their instantaneous variance evolve as a bivariate, possibly correlated, diffusive process. The original Heston model provides a quasi-closed formula for the pricing of several derivative products such as European options. By applying the fuzzy extension principle, the authors generalize the model to the case of fuzzy parameters; given their shape the authors are able to derive the membership of the fuzzy price of a European option. Finally, to understand the extent to which their approach might be useful in practice, they give a numerical illustration of their procedure on the S&P 500 and VIX indexes. As a by-product of their research, a simple estimation method is introduced to obtain (crisp) parameters in the Heston model under the risk-neutral measure and applied in the sequel of the paper to obtain alternative shapes for the fuzzy parameters of the model.

Suggested Citation

  • Gianna Figa-Talamanca & Maria Letizia Guerra, 2012. "Market Application of the Fuzzy-Stochastic Approach in the Heston Option Pricing Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(2), pages 162-179, May.
  • Handle: RePEc:fau:fauart:v:62:y:2012:i:2:p:162-179
    as

    Download full text from publisher

    File URL: http://journal.fsv.cuni.cz/storage/1245_figa.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Letizia Guerra & Laerte Sorini & Luciano Stefanini, 2015. "Option prices by differential evolution," Working Papers 1511, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2015.
    2. Maria Letizia Guerra & Laerte Sorini & Luciano Stefanini, 2013. "Value function computation in fuzzy models by differential evolution," Working Papers 1311, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2013.

    More about this item

    Keywords

    fuzzy numbers; stochastic volatility; risk-neutral measure; option pricing;

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:fauart:v:62:y:2012:i:2:p:162-179. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lenka Herrmannova). General contact details of provider: http://edirc.repec.org/data/icunicz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.