IDEAS home Printed from https://ideas.repec.org/a/ety/journl/v39y2013i2p11-29.html
   My bibliography  Save this article

The technological paradigm of Nanosciences and Technologies: a study of science-technology time and space relations

Author

Listed:
  • Ugo Finardi

    (National Research Council of Italy, Institute of Economic Research on Firms and Growth.)

Abstract

One of the most relevant theoretical insights into the characteristics of technological change is Dosi’s technological paradigm. Dosi aims to overcome technology-push and demand-pull theories into a framework closer to facts. The present contribution is set in this framework, aiming to find some evidence, starting from an empirical analysis, of the characteristics of technological paradigms. The context is the ex ante and preindustrialization phase of a highly knowledge-intensive paradigm, that of nanotechnologies and nanosciences. The present work exploits an empirical analysis related to patent citations, with particular regard to citations of scientific journal articles. Both the time and the space dimensions are explored. Results – strict time and space relations between patenting and previous scientific production – confirm some characteristics of technological paradigms envisaged both by the original work and by subsequent literature.

Suggested Citation

  • Ugo Finardi, 2013. "The technological paradigm of Nanosciences and Technologies: a study of science-technology time and space relations," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 39(2), pages 11-29, Julio-Dic.
  • Handle: RePEc:ety:journl:v:39:y:2013:i:2:p:11-29
    DOI: 10.24275/ETYPUAM/NE/392013/Finardi
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24275/ETYPUAM/NE/392013/Finardi
    Download Restriction: no

    File URL: https://libkey.io/10.24275/ETYPUAM/NE/392013/Finardi?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Barry Bozeman & Philippe Larédo & Vincent Mangematin, 2007. "Understanding the emergence and deployment of “nano” S&T," Post-Print hal-00424523, HAL.
    3. Cimoli, Mario & Dosi, Giovanni, 1995. "Technological Paradigms, Patterns of Learning and Development: An Introductory Roadmap," Journal of Evolutionary Economics, Springer, vol. 5(3), pages 243-268, September.
    4. David J. Teece, 2008. "Dosi's technological paradigms and trajectories: insights for economics and management," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(3), pages 507-512, June.
    5. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    6. Avenel, E. & Favier, A.V. & Ma, S. & Mangematin, V. & Rieu, C., 2007. "Diversification and hybridization in firm knowledge bases in nanotechnologies," Research Policy, Elsevier, vol. 36(6), pages 864-870, July.
    7. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    8. Bozeman, Barry & Laredo, Philippe & Mangematin, Vincent, 2007. "Understanding the emergence and deployment of "nano" S&T," Research Policy, Elsevier, vol. 36(6), pages 807-812, July.
    9. Mario Coccia & Ugo Finardi & Diego Margon, 2012. "Current trends in nanotechnology research across worldwide geo-economic players," The Journal of Technology Transfer, Springer, vol. 37(5), pages 777-787, October.
    10. Richard R. Nelson, 2008. "Factors affecting the power of technological paradigms," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(3), pages 485-497, June.
    11. Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
    12. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    13. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    14. Loet Leydesdorff & Ping Zhou, 2007. "Nanotechnology as a field of science: Its delineation in terms of journals and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 693-713, March.
    15. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
    16. Ugo Finardi, 2011. "Time relations between scientific production and patenting of knowledge: the case of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 37-50, October.
    17. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    18. E. Bacchiocchi & F. Montobbio, 2009. "Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations," The Journal of Technology Transfer, Springer, vol. 34(2), pages 169-181, April.
    19. Nick von Tunzelmann & Franco Malerba & Paul Nightingale & Stan Metcalfe, 2008. "Technological paradigms: past, present and future," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(3), pages 467-484, June.
    20. Angela Hullmann & Martin Meyer, 2003. "Publications and patents in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 507-527, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ugo Finardi, 2011. "Time relations between scientific production and patenting of knowledge: the case of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 37-50, October.
    2. Ugo Finardi, 2010. "Temporal and spatial relations between patents and scientific journal articles: the case of nanotechnologies," CERIS Working Paper 201007, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    3. Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
    4. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    5. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    6. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    7. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    8. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    9. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2014. "The emergence of new technology-based sectors in European regions: A proximity-based analysis of nanotechnology," Research Policy, Elsevier, vol. 43(10), pages 1681-1696.
    10. Coccia, Mario, 2015. "General sources of general purpose technologies in complex societies: Theory of global leadership-driven innovation, warfare and human development," Technology in Society, Elsevier, vol. 42(C), pages 199-226.
    11. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2012. "The emergence of new technology-based sectors at the regional level: a proximity-based analysis of nanotechnology," Papers in Evolutionary Economic Geography (PEEG) 1211, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2012.
    12. Dovev Lavie & Israel Drori, 2012. "Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs," Organization Science, INFORMS, vol. 23(3), pages 704-724, June.
    13. Sabatier, Mareva & Chollet, Barthélemy, 2017. "Is there a first mover advantage in science? Pioneering behavior and scientific production in nanotechnology," Research Policy, Elsevier, vol. 46(2), pages 522-533.
    14. Persoon, P.G.J. & Bekkers, R.N.A. & Alkemade, F., 2020. "The science base of renewables," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    15. Qingjun Zhao & Jiancheng Guan, 2013. "Love dynamics between science and technology: some evidences in nanoscience and nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 113-132, January.
    16. R. Karpagam & S. Gopalakrishnan & M. Natarajan & B. Ramesh Babu, 2011. "Mapping of nanoscience and nanotechnology research in India: a scientometric analysis, 1990–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 501-522, November.
    17. Qingjun Zhao & Jiancheng Guan, 2012. "Modeling the dynamic relation between science and technology in nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 561-579, February.
    18. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    19. Christoph Grimpe & Roberto Patuelli, 2011. "Regional knowledge production in nanomaterials: a spatial filtering approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 519-541, June.
    20. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.

    More about this item

    Keywords

    technological paradigms; pre-innovative phase; time and space relations; nanotechnologies; nanosciences; patent citations.;
    All these keywords.

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ety:journl:v:39:y:2013:i:2:p:11-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Georgina Alenka Guzmán Chávez (email available below). General contact details of provider: https://edirc.repec.org/data/etyuamx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.