IDEAS home Printed from https://ideas.repec.org/a/ety/journl/v39y2013i2p11-29.html
   My bibliography  Save this article

The technological paradigm of Nanosciences and Technologies: a study of science-technology time and space relations

Author

Listed:
  • Ugo Finardi

    () (National Research Council of Italy, Institute of Economic Research on Firms and Growth.)

Abstract

One of the most relevant theoretical insights into the characteristics of technological change is Dosi’s technological paradigm. Dosi aims to overcome technology-push and demand-pull theories into a framework closer to facts. The present contribution is set in this framework, aiming to find some evidence, starting from an empirical analysis, of the characteristics of technological paradigms. The context is the ex ante and preindustrialization phase of a highly knowledge-intensive paradigm, that of nanotechnologies and nanosciences. The present work exploits an empirical analysis related to patent citations, with particular regard to citations of scientific journal articles. Both the time and the space dimensions are explored. Results – strict time and space relations between patenting and previous scientific production – confirm some characteristics of technological paradigms envisaged both by the original work and by subsequent literature.

Suggested Citation

  • Ugo Finardi, 2013. "The technological paradigm of Nanosciences and Technologies: a study of science-technology time and space relations," Economía: teoría y práctica, Universidad Autónoma Metropolitana, México, vol. 39(2), pages 11-29, Julio-Dic.
  • Handle: RePEc:ety:journl:v:39:y:2013:i:2:p:11-29
    DOI: 10.24275/ETYPUAM/NE/392013/Finardi
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24275/ETYPUAM/NE/392013/Finardi
    Download Restriction: no

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Barry Bozeman & Philippe Larédo & Vincent Mangematin, 2007. "Understanding the emergence and deployment of “nano” S&T," Post-Print hal-00424523, HAL.
    3. Cimoli, Mario & Dosi, Giovanni, 1995. "Technological Paradigms, Patterns of Learning and Development: An Introductory Roadmap," Journal of Evolutionary Economics, Springer, vol. 5(3), pages 243-268, September.
    4. David J. Teece, 2008. "Dosi's technological paradigms and trajectories: insights for economics and management," Industrial and Corporate Change, Oxford University Press, vol. 17(3), pages 507-512, June.
    5. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    6. Avenel, E. & Favier, A.V. & Ma, S. & Mangematin, V. & Rieu, C., 2007. "Diversification and hybridization in firm knowledge bases in nanotechnologies," Research Policy, Elsevier, vol. 36(6), pages 864-870, July.
    7. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    8. Bozeman, Barry & Laredo, Philippe & Mangematin, Vincent, 2007. "Understanding the emergence and deployment of "nano" S&T," Research Policy, Elsevier, vol. 36(6), pages 807-812, July.
    9. Mario Coccia & Ugo Finardi & Diego Margon, 2012. "Current trends in nanotechnology research across worldwide geo-economic players," The Journal of Technology Transfer, Springer, vol. 37(5), pages 777-787, October.
    10. Richard R. Nelson, 2008. "Factors affecting the power of technological paradigms," Industrial and Corporate Change, Oxford University Press, vol. 17(3), pages 485-497, June.
    11. Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
    12. Eric Avenel & Anne-Violaine Favier & Simon Ma & Vincent Mangematin & Carole Rieu, 2007. "Diversification and hybridization in firm knowledge bases in nanotechnologies," Post-Print hal-00424531, HAL.
    13. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    14. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
    15. Ugo Finardi, 2011. "Time relations between scientific production and patenting of knowledge: the case of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 37-50, October.
    16. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    17. E. Bacchiocchi & F. Montobbio, 2009. "Knowledge diffusion from university and public research. A comparison between US, Japan and Europe using patent citations," The Journal of Technology Transfer, Springer, vol. 34(2), pages 169-181, April.
    18. Nick von Tunzelmann & Franco Malerba & Paul Nightingale & Stan Metcalfe, 2008. "Technological paradigms: past, present and future," Industrial and Corporate Change, Oxford University Press, vol. 17(3), pages 467-484, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ugo Finardi, 2011. "Time relations between scientific production and patenting of knowledge: the case of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 37-50, October.
    2. Guijie Zhang & Yuqiang Feng & Guang Yu & Luning Liu & Yanqiqi Hao, 2017. "Analyzing the time delay between scientific research and technology patents based on the citation distribution model," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1287-1306, June.
    3. Ugo Finardi, 2010. "Temporal and spatial relations between patents and scientific journal articles: the case of nanotechnologies," CERIS Working Paper 201007, Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY -NOW- Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY.
    4. Dovev Lavie & Israel Drori, 2012. "Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs," Organization Science, INFORMS, vol. 23(3), pages 704-724, June.
    5. Sabatier, Mareva & Chollet, Barthélemy, 2017. "Is there a first mover advantage in science? Pioneering behavior and scientific production in nanotechnology," Research Policy, Elsevier, vol. 46(2), pages 522-533.
    6. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2014. "The emergence of new technology-based sectors in European regions: A proximity-based analysis of nanotechnology," Research Policy, Elsevier, vol. 43(10), pages 1681-1696.
    7. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2012. "The emergence of new technology-based sectors at the regional level: a proximity-based analysis of nanotechnology," Papers in Evolutionary Economic Geography (PEEG) 1211, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2012.
    8. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    9. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    10. Fiedler, Marina & Welpe, Isabell M., 2010. "Antecedents of cooperative commercialisation strategies of nanotechnology firms," Research Policy, Elsevier, vol. 39(3), pages 400-410, April.
    11. Ohid Yaqub, 2018. "Variation in the dynamics and performance of industrial innovation: what can we learn from vaccines and HIV vaccines?," Industrial and Corporate Change, Oxford University Press, vol. 27(1), pages 173-187.
    12. Caviggioli, Federico & De Marco, Antonio & Montobbio, Fabio & Ughetto, Elisa, 2020. "The licensing and selling of inventions by US universities," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    13. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    14. Pandza, Krsto & Ellwood, Paul, 2013. "Strategic and ethical foundations for responsible innovation," Research Policy, Elsevier, vol. 42(5), pages 1112-1125.
    15. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    16. Joaquín M. Azagra-Caro, 2012. "Access to universities’ public knowledge: who’s more nationalist?," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 671-691, June.
    17. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    18. Fiorenzo Franceschini & Domenico Maisano, 2012. "Publication and patent analysis of European researchers in the field of production technology and manufacturing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(1), pages 89-100, October.
    19. Philippe Larédo & Carole Rieu & Lionel Villard & Bernard Kahane & Aurélie Delemarle & Corine Genet & Vincent Mangematin, 2009. "Emergence des nanotechnologies : Vers un nouveau "modèle industriel "?," Post-Print hal-00424261, HAL.
    20. Nicolas Battard & Paul Donnelly & Vincent Mangematin, 2017. "Organizational Responses to Institutional Pressures: Reconfiguration of Spaces in Nanosciences and Nanotechnologies," Post-Print hal-01745508, HAL.

    More about this item

    Keywords

    technological paradigms; pre-innovative phase; time and space relations; nanotechnologies; nanosciences; patent citations.;
    All these keywords.

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ety:journl:v:39:y:2013:i:2:p:11-29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Georgina Alenka Guzmán Chávez). General contact details of provider: http://edirc.repec.org/data/etyuamx.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.