IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v39y2010i6p810-821.html
   My bibliography  Save this article

Knowledge sources, patent protection, and commercialization of pharmaceutical innovations

Author

Listed:
  • Sternitzke, Christian

Abstract

This paper investigates different types of innovations (from radical to incremental) in the pharmaceutical industry by studying bibliometric data of drugs approved by the United States Food and Drug Administration (FDA), looking at time-to-market aspects, knowledge sources of these innovations, and protection strategies. Scientific knowledge stemming from the public sector is found to be important for all innovations. Nevertheless, radical innovations build on a higher degree on basic research, and they build on a significantly higher share of own prior scientific research than do incremental innovations. Furthermore, each drug is shown to be accompanied by, on average, about 19 journal publications and 23 additional patents. Additional patent filings peak when the commercialization of the drug is in reach. Firms do not differ among the various types of innovations regarding the amount of additional patent filings, but rather with the speed of filing these patents. Finally, this work contributes to the improvement of future econometric analyses that aim to link bibliometric indicators such as patent or publication counts to firm success.

Suggested Citation

  • Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
  • Handle: RePEc:eee:respol:v:39:y:2010:i:6:p:810-821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(10)00074-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mansfield, Edwin, 1998. "Academic research and industrial innovation: An update of empirical findings1," Research Policy, Elsevier, vol. 26(7-8), pages 773-776, April.
    2. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    3. Zucker, Lynne G. & Darby, Michael R., 1997. "Present at the biotechnological revolution: transformation of technological identity for a large incumbent pharmaceutical firm," Research Policy, Elsevier, vol. 26(4-5), pages 429-446, December.
    4. Hicks, Diana M. & Isard, Phoebe A. & Martin, Ben R., 1996. "A morphology of Japanese and European corporate research networks," Research Policy, Elsevier, vol. 25(3), pages 359-378, May.
    5. Adam B. Jaffe & Manuel Trajtenberg & Michael S. Fogarty, 2000. "The Meaning of Patent Citations: Report on the NBER/Case-Western Reserve Survey of Patentees," NBER Working Papers 7631, National Bureau of Economic Research, Inc.
    6. Gambardella, Alfonso, 1992. "Competitive advantages from in-house scientific research: The US pharmaceutical industry in the 1980s," Research Policy, Elsevier, vol. 21(5), pages 391-407, October.
    7. Tijssen, Robert J. W., 2004. "Is the commercialisation of scientific research affecting the production of public knowledge?: Global trends in the output of corporate research articles," Research Policy, Elsevier, vol. 33(5), pages 709-733, July.
    8. Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
    9. Cockburn, Iain M & Henderson, Rebecca M, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    10. Chaney, Paul K & Devinney, Timothy M & Winer, Russell S, 1991. "The Impact of New Product Introductions on the Market Value of Firms," The Journal of Business, University of Chicago Press, vol. 64(4), pages 573-610, October.
    11. Achilladelis, Basil & Schwarzkopf, Albert & Cines, Martin, 1990. "The dynamics of technological innovation: The case of the chemical industry," Research Policy, Elsevier, vol. 19(1), pages 1-34, February.
    12. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    13. Achilladelis, Basil & Antonakis, Nicholas, 2001. "The dynamics of technological innovation: the case of the pharmaceutical industry," Research Policy, Elsevier, vol. 30(4), pages 535-588, April.
    14. Lang, Larry H P & Stulz, Rene M, 1994. "Tobin's q, Corporate Diversification, and Firm Performance," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1248-1280, December.
    15. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    16. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    17. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    18. Comanor, William S & Scherer, Frederic M, 1969. "Patent Statistics as a Measure of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 77(3), pages 392-398, May/June.
    19. Hirschey, Mark & Richardson, Vernon J., 2004. "Are scientific indicators of patent quality useful to investors?," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 91-107, January.
    20. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    21. Rebecca Henderson & Iain Cockburn, 1994. "Measuring Competence? Exploring Firm Effects in Pharmaceutical Research," Strategic Management Journal, Wiley Blackwell, vol. 15(S1), pages 63-84, December.
    22. Narin, Francis & Rozek, Richard P., 1988. "Bibliometric analysis of U.S. pharmaceutical industry research performance," Research Policy, Elsevier, vol. 17(3), pages 139-154, June.
    23. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    24. Achilladelis, Basil, 1993. "The dynamics of technological innovation: The sector of antibacterial medicines," Research Policy, Elsevier, vol. 22(4), pages 279-308, August.
    25. Wernerfelt, Birger & Montgomery, Cynthia A, 1988. "Tobin's q and the Importance of Focus in Firm Performance," American Economic Review, American Economic Association, vol. 78(1), pages 246-250, March.
    26. Chris Freeman & Luc Soete, 1997. "The Economics of Industrial Innovation, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262061953, December.
    27. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    28. Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
    29. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    2. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    3. Anna Giunta & Filippo M. Pericoli & Eleonora Pierucci, 2016. "University–Industry collaboration in the biopharmaceuticals: the Italian case," The Journal of Technology Transfer, Springer, vol. 41(4), pages 818-840, August.
    4. Bastian Rake, 2017. "Determinants of pharmaceutical innovation: the role of technological opportunities revisited," Journal of Evolutionary Economics, Springer, vol. 27(4), pages 691-727, September.
    5. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    6. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    7. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    8. Kapoor, Rahul & McGrath, Patia J., 2014. "Unmasking the interplay between technology evolution and R&D collaboration: Evidence from the global semiconductor manufacturing industry, 1990–2010," Research Policy, Elsevier, vol. 43(3), pages 555-569.
    9. J. P. Eggers & Sarah Kaplan, 2009. "Cognition and Renewal: Comparing CEO and Organizational Effects on Incumbent Adaptation to Technical Change," Organization Science, INFORMS, vol. 20(2), pages 461-477, April.
    10. Lim, Kwanghui, 2004. "The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)," Research Policy, Elsevier, vol. 33(2), pages 287-321, March.
    11. David, Paul A. & Hall, Bronwyn H. & Toole, Andrew A., 2000. "Is public R&D a complement or substitute for private R&D? A review of the econometric evidence," Research Policy, Elsevier, vol. 29(4-5), pages 497-529, April.
    12. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    13. Frank T. Rothaermel & Andrew M. Hess, 2007. "Building Dynamic Capabilities: Innovation Driven by Individual-, Firm-, and Network-Level Effects," Organization Science, INFORMS, vol. 18(6), pages 898-921, December.
    14. Fabrizio, Kira R., 2009. "Absorptive capacity and the search for innovation," Research Policy, Elsevier, vol. 38(2), pages 255-267, March.
    15. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    16. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    17. Hsu, David H. & Hsu, Po-Hsuan & Zhao, Qifeng, 2021. "Rich on paper? Chinese firms’ academic publications, patents, and market value," Research Policy, Elsevier, vol. 50(9).
    18. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    19. R. J. W. Tussen & R. K. Buter & Th. N. van Leeuwen, 2000. "Technological Relevance of Science: An Assessment of Citation Linkages between Patents and Research Papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 389-412, February.
    20. Becker Wolfgang & Peters Jürgen, 2005. "Innovation Effects of Science-Related Technological Opportunities / Innovationseffekte von technologischen Möglichkeiten aus dem Wissenschaftsbereich: Theoretical Considerations and Empirical Findings," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(2), pages 130-150, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:39:y:2010:i:6:p:810-821. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.