IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v132y2023icp144-153.html
   My bibliography  Save this article

A city-level transport vision for 2050: Reimagined since COVID-19

Author

Listed:
  • Pawluk De-Toledo, Katherine
  • O'Hern, Steve
  • Koppel, Sjaan

Abstract

Transformative changes are needed in the transport sector to limit global warming. Radical transport disruptions experienced during the COVID-19 pandemic, such as greater Working from Home (WFH) and active travel, present a unique opportunity to reimagine more sustainable transport systems. The aim of the current study was to develop a 2050 transport vision and identify short term priorities for Melbourne (Australia) based on in-depth stakeholder interviews. To the best of our knowledge, this is the first backcasting study since COVID-19. As the city with the ‘longest lockdown’, Melbourne has valuable lessons for the rest of the world. Overall, participants reported that they were uncertain about the future of the central business district. Participants envisaged that the transport system would be carbon-neutral or carbon-positive. However, private motor vehicles (including electric and automated) were not considered the solution for handling the scale of trips anticipated with the projected population size. Instead, participants perceived that in Melbourne by 2050, there will be less work-related travel due to greater job flexibility and WFH. More localised neighbourhood living (20-minute cities), with most short trips undertaken by active travel, and longer trips by public transport. Furthermore, it was projected that regional centres will grow and the transport system will be for the whole state of Victoria and not just Melbourne. Finally, the study identified short term (2021–2030) travel behaviour priorities and eight immediate actions, including: urban design focusing on inspiring active travel; reallocating road space to prioritise active and public transport modes; planning for micromobility urban freight; improving public transport services; expanding public transport networks; installing electric vehicle charging infrastructure; supporting WFH to encourage trip avoidance; and encouraging political consensus when building major transport projects.

Suggested Citation

  • Pawluk De-Toledo, Katherine & O'Hern, Steve & Koppel, Sjaan, 2023. "A city-level transport vision for 2050: Reimagined since COVID-19," Transport Policy, Elsevier, vol. 132(C), pages 144-153.
  • Handle: RePEc:eee:trapol:v:132:y:2023:i:c:p:144-153
    DOI: 10.1016/j.tranpol.2022.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X22003651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2022.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varho, Vilja & Tapio, Petri, 2013. "Combining the qualitative and quantitative with the Q2 scenario technique — The case of transport and climate," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 611-630.
    2. Luca Staricco & Valentina Rappazzo & Jacopo Scudellari & Elisabetta Vitale Brovarone, 2019. "Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    3. Steurer, Nora & Bonilla, David, 2016. "Building sustainable transport futures for the Mexico City Metropolitan Area," Transport Policy, Elsevier, vol. 52(C), pages 121-133.
    4. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    5. González-González, Esther & Nogués, Soledad & Stead, Dominic, 2020. "Parking futures: Preparing European cities for the advent of automated vehicles," Land Use Policy, Elsevier, vol. 91(C).
    6. Büchel, Beda & Marra, Alessio Daniele & Corman, Francesco, 2022. "COVID-19 as a window of opportunity for cycling: Evidence from the first wave," Transport Policy, Elsevier, vol. 116(C), pages 144-156.
    7. Currie, Graham & Jain, Taru & Aston, Laura, 2021. "Evidence of a post-COVID change in travel behaviour – Self-reported expectations of commuting in Melbourne," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 218-234.
    8. Soria-Lara, Julio A. & Banister, David, 2018. "Evaluating the impacts of transport backcasting scenarios with multi-criteria analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 26-37.
    9. Marsden, Greg & Docherty, Iain, 2021. "Mega-disruptions and policy change: Lessons from the mobility sector in response to the Covid-19 pandemic in the UK," Transport Policy, Elsevier, vol. 110(C), pages 86-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    2. Gupta, Dipti & Dhar, Subash, 2022. "Exploring the freight transportation transitions for mitigation and development pathways of India," Transport Policy, Elsevier, vol. 129(C), pages 156-175.
    3. Vega-Gonzalo, Maria & Gomez, Juan & Christidis, Panayotis, 2023. "How has COVID-19 changed private car use in European urban areas? An analysis of the effect of socio-economic characteristics and mobility habits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    4. Nogués, Soledad & González-González, Esther & Cordera, Rubén, 2020. "New urban planning challenges under emerging autonomous mobility: evaluating backcasting scenarios and policies through an expert survey," Land Use Policy, Elsevier, vol. 95(C).
    5. Ariza-Álvarez, Amor & Soria-Lara, Julio A. & Arce-Ruiz, Rosa M. & López-Lambas, María Eugenia & Jimenez-Espada, Montaña, 2021. "Experimenting with scenario-building narratives to integrate land use and transport," Transport Policy, Elsevier, vol. 101(C), pages 57-70.
    6. Zhang, Junyi & Hayashi, Yoshitsugu, 2022. "Research frontier of COVID-19 and passenger transport: A focus on policymaking," Transport Policy, Elsevier, vol. 119(C), pages 78-88.
    7. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    8. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    9. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    10. Ferreira, Sara & Amorim, Marco & Lobo, António & Kern, Mira & Fanderl, Nora & Couto, António, 2022. "Travel mode preferences among German commuters over the course of COVID-19 pandemic," Transport Policy, Elsevier, vol. 126(C), pages 55-64.
    11. Daniel Albalate & Xavier Fageda, 2022. ""Have Low Emission Zones slowed urban traffic recovery after Covid-19?"," IREA Working Papers 202222, University of Barcelona, Research Institute of Applied Economics, revised Dec 2022.
    12. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    13. Inese Mavlutova & Dzintra Atstaja & Janis Grasis & Jekaterina Kuzmina & Inga Uvarova & Dagnija Roga, 2023. "Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review," Energies, MDPI, vol. 16(8), pages 1-16, April.
    14. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    15. Lukas Hartwig & Reinhard Hössinger & Yusak Octavius Susilo & Astrid Gühnemann, 2022. "The Impacts of a COVID-19 Related Lockdown (and Reopening Phases) on Time Use and Mobility for Activities in Austria—Results from a Multi-Wave Combined Survey," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    16. Azad Singh Bali & Alex Jingwei He & M Ramesh, 2022. "Health policy and COVID-19: path dependency and trajectory [Health care reform in Germany: Patchwork change within established governance structures]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 41(1), pages 83-95.
    17. Liu, Qiyang & Liu, Zhengying & Kang, Tingting & Zhu, Le & Zhao, Pengjun, 2022. "Transport inequities through the lens of environmental racism: Rural-urban migrants under Covid-19," Transport Policy, Elsevier, vol. 122(C), pages 26-38.
    18. Ralph Buehler & John Pucher, 2022. "Cycling through the COVID-19 Pandemic to a More Sustainable Transport Future: Evidence from Case Studies of 14 Large Bicycle-Friendly Cities in Europe and North America," Sustainability, MDPI, vol. 14(12), pages 1-32, June.
    19. Wojciech Kazimierz Szczepanek & Maciej Kruszyna, 2022. "The Impact of COVID-19 on the Choice of Transport Means in Journeys to Work Based on the Selected Example from Poland," Sustainability, MDPI, vol. 14(13), pages 1-9, June.
    20. Nie, Qifan & Qian, Xinwu & Guo, Shuocheng & Jones, Steven & Doustmohammadi, Mehrnaz & Anderson, Michael D., 2022. "Impact of COVID-19 on paratransit operators and riders: A case study of central Alabama," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 48-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:132:y:2023:i:c:p:144-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.