IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v123y2022icp82-103.html
   My bibliography  Save this article

Is port state control influenced by the COVID-19? Evidence from inspection data

Author

Listed:
  • Yan, Ran
  • Mo, Haoyu
  • Guo, Xiaomeng
  • Yang, Ying
  • Wang, Shuaian

Abstract

Maritime transport plays a key role in global trade. The safeguard of maritime transport is the Port State Control (PSC) inspection implemented all over the world. The outbreak of the Coronavirus disease (COVID-19) in 2020 presents new and unprecedented impacts on global supply chains and the ports as well as the entire shipping industry. Various measures were adopted by the countries and regions to halt the spread of the pandemic, mainly by reducing face-to-face interactions. As PSC inspections involve getting onboard vessels and in-person communications between the inspectors and the crew, its procedure and results are highly likely to be influenced by the COVID-19. This study aims to explore whether, how, and why the global and regional PSC inspection statuses are influenced by the pandemic through analyzing real inspection data. Specifically, three general indicators, namely inspection number, average deficiency number per inspection, and detention rate, are considered. Moreover, a detailed and comprehensive analysis of the inspection data at the Hong Kong port is conducted, including the number of inspections conducted, the average deficiency number and detention rate, the types of inspections conducted and ships inspected, the detailed deficiency and detention conditions, the relationship between the local pandemic situation and the PSC inspection status, and regression analysis on the influencing factors on inspection outcome. It is found that the COVID-19 pandemic indeed has an impact on PSC. Meanwhile, pragmatic and flexible measures are adopted by the port states, and the PSC has always been acting as a ‘safety net’ to guarantee maritime safety, promote the marine environment, and protect the seafarers' rights even under the difficult times during the COVID-19 pandemic.

Suggested Citation

  • Yan, Ran & Mo, Haoyu & Guo, Xiaomeng & Yang, Ying & Wang, Shuaian, 2022. "Is port state control influenced by the COVID-19? Evidence from inspection data," Transport Policy, Elsevier, vol. 123(C), pages 82-103.
  • Handle: RePEc:eee:trapol:v:123:y:2022:i:c:p:82-103
    DOI: 10.1016/j.tranpol.2022.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X22000853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2022.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin X. Li & Haisha Zheng, 2008. "Enforcement of law by the Port State Control (PSC)," Maritime Policy & Management, Taylor & Francis Journals, vol. 35(1), pages 61-71, February.
    2. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    3. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    4. Knapp, Sabine & Franses, Philip Hans, 2008. "Econometric analysis to differentiate effects of various ship safety inspections," Marine Policy, Elsevier, vol. 32(4), pages 653-662, July.
    5. Fan, Lixian & Luo, Meifeng & Yin, Jinbo, 2014. "Flag choice and Port State Control inspections—Empirical evidence using a simultaneous model," Transport Policy, Elsevier, vol. 35(C), pages 350-357.
    6. Pierre Cariou & Maximo Q. Mejia & Francois-Charles Wolff, 2007. "An econometric analysis of deficiencies noted in port state control inspections," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(3), pages 243-258, June.
    7. Yang, Zhisen & Yang, Zaili & Teixeira, Angelo Palos, 2020. "Comparative analysis of the impact of new inspection regime on port state control inspection," Transport Policy, Elsevier, vol. 92(C), pages 65-80.
    8. Sabine Knapp & Philip Hans Franses, 2007. "A global view on port state control: econometric analysis of the differences across port state control regimes," Maritime Policy & Management, Taylor & Francis Journals, vol. 34(5), pages 453-482, October.
    9. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    10. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jiang-Hong & Yang, Qiang & Jiang, Jun, 2023. "Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yi & Qi, Guanqiu & Jin, Mengjie & Yuen, Kum Fai & Chen, Zhuo & Li, Kevin X., 2021. "Efficiency of Port State Control inspection regimes: A comparative study," Transport Policy, Elsevier, vol. 106(C), pages 165-172.
    2. Zhu, Jiang-Hong & Yang, Qiang & Jiang, Jun, 2023. "Identifying crucial deficiency categories influencing ship detention: A method of combining cloud model and prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    5. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    6. Yan, Ran & Wang, Shuaian & Fagerholt, Kjetil, 2020. "A semi-“smart predict then optimize” (semi-SPO) method for efficient ship inspection," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 100-125.
    7. Jose Manuel Prieto & Victor Amor & Ignacio Turias & David Almorza & Francisco Piniella, 2021. "Evaluation of Paris MoU Maritime Inspections Using a STATIS Approach," Mathematics, MDPI, vol. 9(17), pages 1-13, August.
    8. Esma Gül Emecen Kara, 2016. "Risk Assessment in the Istanbul Strait Using Black Sea MOU Port State Control Inspections," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    9. Graziano, Armando & Mejia, Maximo Q. & Schröder-Hinrichs, Jens-Uwe, 2018. "Achievements and challenges on the implementation of the European Directive on Port State Control," Transport Policy, Elsevier, vol. 72(C), pages 97-108.
    10. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Cariou, Pierre & Wolff, Francois-Charles, 2015. "Identifying substandard vessels through Port State Control inspections: A new methodology for Concentrated Inspection Campaigns," Marine Policy, Elsevier, vol. 60(C), pages 27-39.
    12. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Yang, Zaili & Ng, Adolf K.Y. & Wang, Jin, 2014. "A new risk quantification approach in port facility security assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 72-90.
    14. Jose Manuel Prieto & Víctor Amor-Esteban & David Almorza-Gomar & Ignacio Turias & Francisco Piniella, 2023. "Application of Multivariate Statistical Techniques as an Indicator of Variability of the Effects of COVID-19 on the Paris Memorandum of Understanding on Port State Control," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    15. Xiao, Yi & Wang, Grace & Ge, Ying-En & Xu, Qinyi & Li, Kevin X., 2021. "Game model for a new inspection regime of port state control under different reward and punishment conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    16. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Armando Graziano & Pierre Cariou & François-Charles Wolff & Maximo Mejia & Jens-Uwe Schröder-Hinrichs, 2017. "Port state control inspections in the European Union: Do inspector's number and background matter?," Working Papers halshs-01649418, HAL.
    18. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    19. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    20. Fan, Lixian & Luo, Meifeng & Yin, Jinbo, 2014. "Flag choice and Port State Control inspections—Empirical evidence using a simultaneous model," Transport Policy, Elsevier, vol. 35(C), pages 350-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:123:y:2022:i:c:p:82-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.