IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524004654.html
   My bibliography  Save this article

An adaptive genetic hyper-heuristic algorithm for a two-echelon vehicle routing problem with dual-customer satisfaction in community group-buying

Author

Listed:
  • Xu, Song
  • Ou, Xiangyue
  • Govindan, Kannan
  • Chen, Mingzhou
  • Yang, Wenting

Abstract

This study focuses on a novel variant of the classical two-echelon vehicle routing problem (2E-VRP), termed the two-echelon vehicle routing problem with dual-customer satisfaction (2E-VRP-DS) (i.e. time windows satisfaction and freshness satisfaction) in community group-buying. It is important to obtain better solutions for the 2E-VRP-DS with long-distance distribution in the first echelon and last-mile delivery in the second echelon. Therefore, a new mathematical model is established for the 2E-VRP-DS that incorporates objectives: minimising the total distribution costs, and maximum dual-customer satisfaction (time windows satisfaction, and product freshness satisfaction). To solve the mathematical model, an efficient adaptive genetic hyper-heuristic algorithm (AGA-HH) was proposed, complemented by a k-means clustering approach to generate initial solutions. The adaptive genetic algorithm is considered to be a high-level heuristic, and ten local search operators were considered as low-level heuristics to expand the search region of the solution and achieve robust optimal results. Three sets of experiments were conducted, and the results demonstrated the superiority of AGA-HH in solving the 2E-VRP-DS, showing improvements in distribution costs reduction, time windows compliance, and product freshness preservation. Moreover, sensitivity analyses were carried out to show the influence of the number of DCs and the tolerance range of product freshness, discovering some managerial insights for companies. Future work should consider and investigate VRPs in other new business modes.

Suggested Citation

  • Xu, Song & Ou, Xiangyue & Govindan, Kannan & Chen, Mingzhou & Yang, Wenting, 2025. "An adaptive genetic hyper-heuristic algorithm for a two-echelon vehicle routing problem with dual-customer satisfaction in community group-buying," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004654
    DOI: 10.1016/j.tre.2024.103874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    2. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    3. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    4. Achamrah, Fatima Ezzahra & Puchinger, Jakob, 2024. "A gradient-descent-based framework for solving a stochastic two-echelon delivery problem with cargo-bikes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    5. Guillaume Marques & Ruslan Sadykov & Rémy Dupas & Jean-Christophe Deschamps, 2022. "A Branch-Cut-and-Price Approach for the Single-Trip and Multi-Trip Two-Echelon Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 56(6), pages 1598-1617, November.
    6. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    7. Lu Zhen & Jiajing Gao & Zheyi Tan & Shuaian Wang & Roberto Baldacci, 2023. "Branch-price-and-cut for trucks and drones cooperative delivery," IISE Transactions, Taylor & Francis Journals, vol. 55(3), pages 271-287, March.
    8. Ziqi Wang & Peihan Wen, 2020. "Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    9. Lu Zhen & Dan Zhuge & Shuanglu Zhang & Shuaian Wang & Harilaos N. Psaraftis, 2024. "Optimizing Sulfur Emission Control Areas for Shipping," Transportation Science, INFORMS, vol. 58(3), pages 614-638, May.
    10. Huang, Nan & Qin, Hu & Du, Yuquan & Wang, Li, 2024. "An exact algorithm for the multi-trip vehicle routing problem with time windows and multi-skilled manpower," European Journal of Operational Research, Elsevier, vol. 319(1), pages 31-49.
    11. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    12. Li, Jiliu & Xu, Min & Sun, Peng, 2022. "Two-echelon capacitated vehicle routing problem with grouping constraints and simultaneous pickup and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 261-291.
    13. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    14. Gaoyuan Qin & Fengming Tao & Lixia Li, 2019. "A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions," IJERPH, MDPI, vol. 16(4), pages 1-17, February.
    15. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    16. Cheng, Cheng & Lu, Jia-Wei & Zhu, Rui & Xiao, Zuopeng & Costa, Alysson M. & Thompson, Russell G., 2022. "An integrated multi-objective model for disaster waste clean-up systems optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    17. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Ding & Manman Li & Jianming Hao, 2023. "A Two-Phase Approach to Routing a Mixed Fleet with Intermediate Depots," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    2. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Raúl Soto-Concha & John Willmer Escobar & Daniel Morillo-Torres & Rodrigo Linfati, 2025. "The Vehicle-Routing Problem with Satellites Utilization: A Systematic Review of the Literature," Mathematics, MDPI, vol. 13(7), pages 1-29, March.
    4. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    5. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.
    6. Karademir, Cigdem & Beirigo, Breno A. & Atasoy, Bilge, 2025. "A two-echelon multi-trip vehicle routing problem with synchronization for an integrated water- and land-based transportation system," European Journal of Operational Research, Elsevier, vol. 322(2), pages 480-499.
    7. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    9. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    10. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    11. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    12. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    13. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    14. Feiyue Qiu & Guodao Zhang & Ping-Kuo Chen & Cheng Wang & Yi Pan & Xin Sheng & Dewei Kong, 2020. "A Novel Multi-Objective Model for the Cold Chain Logistics Considering Multiple Effects," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    15. Li, Jian & Cang, Lu & Wu, Yisheng & Zhang, Zhaotong, 2025. "Two-echelon collaborative many-to-many pickup and delivery problem for agricultural wholesale markets with workload balance," Omega, Elsevier, vol. 130(C).
    16. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    17. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    18. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    19. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    20. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.