IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics1366554524003971.html
   My bibliography  Save this article

Reverse logistics for electric vehicles under uncertainty: An intelligent emergency management approach

Author

Listed:
  • Kumar Jauhar, Sunil
  • Singh, Apoorva
  • Kamble, Sachin
  • Tiwari, Sunil
  • Belhadi, Amine

Abstract

The frequency and intensity of global disasters, including the COVID-19 pandemic, and natural disasters such as earthquakes, floods, and wildfires, are increasing, necessitating effective emergency logistics management. Climate change significantly contributes to these events, emphasizing the importance of limiting human and environmental impacts. The transportation sector, particularly the automobile industry, ranks second in global carbon emissions, highlighting the need to adopt electric vehicles (EVs) to reduce emissions and minimize the impact of climate change. However, this has led to an increase in demand for lithium-ion batteries. During emergencies, end-of-life (EOL) battery management through reverse logistics is essential because recycling EOL batteries can recover valuable raw materials, decrease landfill waste and costs, and support environmental sustainability. This study proposed a two-phase method for intelligent emergency EV battery reverse logistics management. The first phase employed machine learning to address unpredictable battery demands, whereas the second phase proposed a multi-objective model to minimize carbon emissions through efficient order allocation during uncertain emergencies. The model considers carbon emissions and defect rates as sources of uncertainty, current regulations, and customer environmental awareness. The model is solved using the weighted sum and ε-constraint methods, resulting in non-dominant solutions. The findings indicate that combining the selection of third-party reverse logistics providers (3PRLPs) with optimal order allocation for recycling old batteries during emergencies effectively minimizes environmental impacts and combats climate change.

Suggested Citation

  • Kumar Jauhar, Sunil & Singh, Apoorva & Kamble, Sachin & Tiwari, Sunil & Belhadi, Amine, 2024. "Reverse logistics for electric vehicles under uncertainty: An intelligent emergency management approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003971
    DOI: 10.1016/j.tre.2024.103806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krumwiede, Dennis W. & Sheu, Chwen, 2002. "A model for reverse logistics entry by third-party providers," Omega, Elsevier, vol. 30(5), pages 325-333, October.
    2. Zhang, Linghong & Wang, Jingguo & You, Jianxin, 2015. "Consumer environmental awareness and channel coordination with two substitutable products," European Journal of Operational Research, Elsevier, vol. 241(1), pages 63-73.
    3. Govindan, Kannan & Kadziński, Miłosz & Ehling, Ronja & Miebs, Grzegorz, 2019. "Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA," Omega, Elsevier, vol. 85(C), pages 1-15.
    4. Yanliang Wang & Yanzhuo Zhang, 2023. "Multivariate SVR Demand Forecasting for Beauty Products Based on Online Reviews," Mathematics, MDPI, vol. 11(21), pages 1-16, October.
    5. Bouchery, Yann & Woxenius, Johan & Fransoo, Jan C., 2020. "Identifying the market areas of port-centric logistics and hinterland intermodal transportation," European Journal of Operational Research, Elsevier, vol. 285(2), pages 599-611.
    6. Kaddani, Sami & Vanderpooten, Daniel & Vanpeperstraete, Jean-Michel & Aissi, Hassene, 2017. "Weighted sum model with partial preference information: Application to multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 665-679.
    7. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    8. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    9. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    10. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Liu, Jia & Bai, Jinyu & Wu, Desheng, 2021. "Medical supplies scheduling in major public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    12. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    13. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    14. Zhang, XuWei & Liu, Hao & Tu, LiangPing & Zhao, Jian, 2020. "An efficient multi-objective optimization algorithm based on level swarm optimizer," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 588-602.
    15. Wang, Jing & Cai, Jianping & Yue, Xiaohang & Suresh, Nallan C., 2021. "Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    16. Kannan, Govindan & Pokharel, Shaligram & Sasi Kumar, P., 2009. "A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 28-36.
    17. Schilling, David A. & Revelle, Charles & Cohon, Jared, 1983. "An approach to the display and analysis of multiobjective problems," Socio-Economic Planning Sciences, Elsevier, vol. 17(2), pages 57-63.
    18. Diefenbach, Heiko & Emde, Simon & Glock, C. H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 135964, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    20. Islam, Samiul & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Machine learning and optimization models for supplier selection and order allocation planning," International Journal of Production Economics, Elsevier, vol. 242(C).
    21. Ng, ManWo & Waller, S. Travis, 2010. "Reliable evacuation planning via demand inflation and supply deflation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1086-1094, November.
    22. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    23. Mengdi Zhang & Saurabh Pratap & Zhiheng Zhao & D. Prajapati & George Q. Huang, 2021. "Forward and reverse logistics vehicle routing problems with time horizons in B2C e-commerce logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 59(20), pages 6291-6310, October.
    24. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    25. Kenan, Nabil & Diabat, Ali, 2022. "The supply chain of blood products in the wake of the COVID-19 pandemic: Appointment scheduling and other restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    26. Yi, Wei & Kumar, Arun, 2007. "Ant colony optimization for disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 660-672, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    3. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    4. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    5. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    6. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    7. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
    8. Jie Cao & He Han & Yi-Ping Jiang & Ya-Jing Wang, 2018. "Emergency Rescue Vehicle Dispatch Planning Using a Hybrid Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1865-1890, November.
    9. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    10. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    11. Hu, Shao-Long & Han, Chuan-Feng & Meng, Ling-Peng, 2016. "Stochastic optimization for investment in facilities in emergency prevention," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 14-31.
    12. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Weilin Tang & Xinghan Chen & Maoxiang Lang & Shiqi Li & Yuying Liu & Wenyu Li, 2024. "Optimization of Truck–Cargo Online Matching for the Less-Than-Truck-Load Logistics Hub under Real-Time Demand," Mathematics, MDPI, vol. 12(5), pages 1-31, March.
    14. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    15. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    16. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    17. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    18. Sheu, Jiuh-Biing, 2024. "Mass evacuation planning for disasters management: A household evacuation route choice behavior analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    20. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.