IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i1p142-158.html
   My bibliography  Save this article

Time-dependent transport network design under cost-recovery

Author

Listed:
  • Lo, Hong K.
  • Szeto, W.Y.

Abstract

Transport infrastructure projects typically take place over a long time span. They will take a few years to plan and construct, and will last decades into the future. Moreover, revenue collection (from tolls) and investments in infrastructure improvement accrue over time. It is, therefore, crucial to determine the optimal project initiation time, phasing, scaling, toll collection strategies, and financial arrangements over the planning horizon. This paper considers the time dimension in the continuous network design problem and focuses on analyzing the aspect of cost-recovery. We develop a flexible framework under two principles of cost-recovery as a single-level optimization program, solve it through the generalized reduced gradient algorithm, and illustrate through numerical examples three considerations: namely, (i) time-dependent demands and gradual network improvements, (ii) comparison between the two cost-recovery principles, and (iii) spatial equity issues from the perspective of consumer surplus. Moreover, this study proves that Mohring and Harwitz's self-financing result for a single facility in a static framework can be extended to the time-dependent network design problem under the same set of assumptions.

Suggested Citation

  • Lo, Hong K. & Szeto, W.Y., 2009. "Time-dependent transport network design under cost-recovery," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 142-158, January.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:1:p:142-158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00073-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szeto, W.Y. & Lo, Hong K., 2008. "Time-dependent transport network improvement and tolling strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 376-391, February.
    2. Chen, Mei & Bernstein, David H., 2004. "Solving the toll design problem with multiple user groups," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 61-79, January.
    3. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    4. Pines,David & Sadka,Efraim & Zilcha,Itzhak (ed.), 1998. "Topics in Public Economics," Cambridge Books, Cambridge University Press, number 9780521561365, January.
    5. Maher, Michael J. & Zhang, Xiaoyan & Vliet, Dirck Van, 2001. "A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 23-40, January.
    6. Friesz, Terry L. & Harker, Patrick T., 1983. "Multicriteria spatial price equilibrium network design: Theory and computational results," Transportation Research Part B: Methodological, Elsevier, vol. 17(5), pages 411-426, October.
    7. Hong K. Lo & W. Y. Szeto, 2004. "Planning transport network improvements over time," Chapters, in: Der-Horng Lee (ed.), Urban and Regional Transportation Modeling, chapter 9, Edward Elgar Publishing.
    8. Abdulaal, Mustafa & LeBlanc, Larry J., 1979. "Continuous equilibrium network design models," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 19-32, March.
    9. Richard Arnott & Marvin Kraus, 1995. "Self-Financing of Congestible Facilities in a Growing Economy," Boston College Working Papers in Economics 304., Boston College Department of Economics.
    10. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
    11. Kenneth Button & Erik Verhoef (ed.), 1998. "Road Pricing, Traffic Congestion and the Environment," Books, Edward Elgar Publishing, number 940.
    12. Davis, Gary A., 1994. "Exact local solution of the continuous network design problem via stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 61-75, February.
    13. Szeto, W.Y. & Lo, Hong K., 2006. "Transportation network improvement and tolling strategies: The issue of intergeneration equity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 227-243, March.
    14. Friesz, Terry L. & Anandalingam, G. & Mehta, Nihal J. & Nam, Keesung & Shah, Samir J. & Tobin, Roger L., 1993. "The multiobjective equilibrium network design problem revisited: A simulated annealing approach," European Journal of Operational Research, Elsevier, vol. 65(1), pages 44-57, February.
    15. Yang, Hai & Meng, Qiang, 2002. "A note on "highway pricing and capacity choice in a road network under a build-operate-transfer scheme"," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 659-663, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    2. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    3. Khooban, Zohreh & Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y., 2015. "Mixed network design using hybrid scatter search," European Journal of Operational Research, Elsevier, vol. 247(3), pages 699-710.
    4. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    5. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    6. W. Szeto & Y. Jiang & D. Wang & A. Sumalee, 2015. "A Sustainable Road Network Design Problem with Land Use Transportation Interaction over Time," Networks and Spatial Economics, Springer, vol. 15(3), pages 791-822, September.
    7. Anny B. Wang & W. Y. Szeto, 2020. "Bounding the Inefficiency of the Reliability-Based Continuous Network Design Problem Under Cost Recovery," Networks and Spatial Economics, Springer, vol. 20(2), pages 395-422, June.
    8. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    9. Holgui­n-Veras, Jose & Cetin, Mecit & Xia, Shuwen, 2006. "A comparative analysis of US toll policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 852-871, December.
    10. Verhoef, Erik T., 2007. "Second-best road pricing through highway franchising," Journal of Urban Economics, Elsevier, vol. 62(2), pages 337-361, September.
    11. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    12. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    13. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    14. Verhoef, Erik T., 2017. "Cost recovery of congested infrastructure under market power," Journal of Urban Economics, Elsevier, vol. 101(C), pages 45-56.
    15. Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
    16. Ma, Xiaosu & Lo, Hong K., 2012. "Modeling transport management and land use over time," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 687-709.
    17. Yang, Hai & Bell, Michael G. H., 2001. "Transport bilevel programming problems: recent methodological advances," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 1-4, January.
    18. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    19. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    20. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:1:p:142-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.