IDEAS home Printed from
   My bibliography  Save this article

A general and operational representation of Generalised Extreme Value models


  • Daly, Andrew
  • Bierlaire, Michel


Generalised extreme value models provide an interesting theoretical framework to develop closed-form random utility models. Unfortunately, few instances of this family are to be found as operational models in practice. The form of the model, based on a generating function G which must satisfy specific properties, is rather complicated. Fundamentally, it is not an easy task to translate an intuitive perception of the correlation structure by the modeller into a concrete G function. And even if the modeller succeeds in proposing a new G function, the task of proving that it indeed satisfies the properties is cumbersome. In modelling transportation demand, researchers face the problem that many of the choices they wish to model interact in complex ways. One approach to this problem is to use mixed logit models, exploiting the power of simulation-based estimation, to incorporate the interactions required. An alternative approach, however, which is followed in this paper, is to exploit further the GEV model family originally proposed by McFadden [McFadden, D., 1978. Modelling the choice of residential location. In: Karlquist, A. et al. (Eds.), Spatial Interaction Theory and Residential Location. North-Holland, Amsterdam, pp. 75-96]. The main objectives of this paper are (i) to provide a general theoretical foundation, so that the development of new GEV models will be easier in the future, and (ii) to propose an easy way of generating new GEV models without a need for complicated proofs. Our technique requires only a network structure capturing the underlying correlation of the choice situation under consideration. If the network complies with some simple conditions, we show how to build an associated model. We prove that it is indeed a GEV model and, therefore, complies with random utility theory. The multinomial logit, the nested logit and the cross-nested logit models are specific instances of our class of models. So are the recent GenL model, combining choice set generation and choice model and some specialised compound models used in recent transportation work. Probability, expected maximum utility and elasticity formulae for the class of models are provided.

Suggested Citation

  • Daly, Andrew & Bierlaire, Michel, 2006. "A general and operational representation of Generalised Extreme Value models," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 285-305, May.
  • Handle: RePEc:eee:transb:v:40:y:2006:i:4:p:285-305

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    2. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters,in: Credit and State Theories of Money, chapter 1 Edward Elgar Publishing.
    3. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    4. Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
    5. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    6. Daly, Andrew, 2001. "Alternative tree logit models: comments on a paper of Koppelman and Wen," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 717-724, September.
    7. Daly, Andrew, 1987. "Estimating "tree" logit models," Transportation Research Part B: Methodological, Elsevier, vol. 21(4), pages 251-267, August.
    8. Papola, Andrea, 2004. "Some developments on the cross-nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 833-851, November.
    9. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    10. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    11. H C W L Williams, 1977. "On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit," Environment and Planning A, , vol. 9(3), pages 285-344, March.
    12. Philippe Robert-Demontrond & R. Ringoot, 2004. "Introduction," Post-Print halshs-00081823, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:4:p:285-305. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.