IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A general and operational representation of Generalised Extreme Value models

  • Daly, Andrew
  • Bierlaire, Michel
Registered author(s):

    Generalised extreme value models provide an interesting theoretical framework to develop closed-form random utility models. Unfortunately, few instances of this family are to be found as operational models in practice. The form of the model, based on a generating function G which must satisfy specific properties, is rather complicated. Fundamentally, it is not an easy task to translate an intuitive perception of the correlation structure by the modeller into a concrete G function. And even if the modeller succeeds in proposing a new G function, the task of proving that it indeed satisfies the properties is cumbersome. In modelling transportation demand, researchers face the problem that many of the choices they wish to model interact in complex ways. One approach to this problem is to use mixed logit models, exploiting the power of simulation-based estimation, to incorporate the interactions required. An alternative approach, however, which is followed in this paper, is to exploit further the GEV model family originally proposed by McFadden [McFadden, D., 1978. Modelling the choice of residential location. In: Karlquist, A. et al. (Eds.), Spatial Interaction Theory and Residential Location. North-Holland, Amsterdam, pp. 75-96]. The main objectives of this paper are (i) to provide a general theoretical foundation, so that the development of new GEV models will be easier in the future, and (ii) to propose an easy way of generating new GEV models without a need for complicated proofs. Our technique requires only a network structure capturing the underlying correlation of the choice situation under consideration. If the network complies with some simple conditions, we show how to build an associated model. We prove that it is indeed a GEV model and, therefore, complies with random utility theory. The multinomial logit, the nested logit and the cross-nested logit models are specific instances of our class of models. So are the recent GenL model, combining choice set generation and choice model and some specialised compound models used in recent transportation work. Probability, expected maximum utility and elasticity formulae for the class of models are provided.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V99-4GFV5BK-1/2/8cdc8c789fd752e88ed77147d795ecba
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 40 (2006)
    Issue (Month): 4 (May)
    Pages: 285-305

    as
    in new window

    Handle: RePEc:eee:transb:v:40:y:2006:i:4:p:285-305
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Axel Börsch-Supan & Moshe Ben-Akiva & Kenneth Train & Daniel McFadden, 2002. "Hybrid Choice Models: Progress and Challenges," MEA discussion paper series 02009, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    2. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    3. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    4. Koppelman, Frank S. & Wen, Chieh-Hua, 2000. "The paired combinatorial logit model: properties, estimation and application," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 75-89, February.
    5. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters, in: Credit and State Theories of Money, chapter 1 Edward Elgar.
    6. Swait, Joffre, 2001. "Choice set generation within the generalized extreme value family of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 643-666, August.
    7. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-24, March.
    8. Daly, Andrew, 2001. "Alternative tree logit models: comments on a paper of Koppelman and Wen," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 717-724, September.
    9. Daly, Andrew, 1987. "Estimating "tree" logit models," Transportation Research Part B: Methodological, Elsevier, vol. 21(4), pages 251-267, August.
    10. Papola, Andrea, 2004. "Some developments on the cross-nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 833-851, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:4:p:285-305. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.