IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v32y1998i1p1-19.html
   My bibliography  Save this article

Metamodels for estimating waterway delays through series of queues

Author

Listed:
  • Dai, Melody D. M.
  • Schonfeld, Paul

Abstract

A numerical method has been developed for estimating delays on congested waterways. Analytic and numerical results are presented for series of G/G/1 queues, i.e. with generally distributed arrivals and service times and single chambers at each lock. One or two-way traffic operations are modelled. A metamodelling approach which develops simple formulas to approximate the results of simulation models is presented. The structure of the metamodels is developed from queueing theory while their coefficients are statistically estimated from simulation results. The numerical method consists of three modules: (1) delays, (2) arrivals and (3) departures. The first estimates the average waiting time for each lock when the arrival and service time distributions at this lock are known. The second identifies the relations between the arrival distributions at one lock and the departure distributions from the upstream and downstream locks. The third estimates the mean and variance of inter-departure times when the inter-arrival and service time distributions are known. The method can be applied to systems with two-way traffic through common bi-directional servers as well as to one-way traffic systems. Algorithms for both cases are presented. This numerical method is shown to produce results that are close to the simulation results. The metamodels developed for estimating delays and variances of inter-departure times may be applied to waterways and other series of G/G/1 queues. These metamodels for G/G/1 queues may provide key components of algorithms for analyzing networks of queues.

Suggested Citation

  • Dai, Melody D. M. & Schonfeld, Paul, 1998. "Metamodels for estimating waterway delays through series of queues," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 1-19, January.
  • Handle: RePEc:eee:transb:v:32:y:1998:i:1:p:1-19
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(97)00003-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 1972. "Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 59(1), pages 3-3, February.
    2. N/A, 1972. "Summary," National Institute Economic Review, National Institute of Economic and Social Research, vol. 60(1), pages 3-3, May.
    3. Ward Whitt, 1982. "Approximating a Point Process by a Renewal Process, I: Two Basic Methods," Operations Research, INFORMS, vol. 30(1), pages 125-147, February.
    4. K. T. Marshall, 1968. "Some Inequalities in Queuing," Operations Research, INFORMS, vol. 16(3), pages 651-668, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.
    2. Yuan, Yanbin & Ji, Bin & Yuan, Xiaohui & Huang, Yuehua, 2015. "Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm optimization and heuristic-adjusted strategies," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 74-89.
    3. Deng, Yao & Sheng, Dian & Liu, Baoli, 2021. "Managing ship lock congestion in an inland waterway: A bottleneck model with a service time window," Transport Policy, Elsevier, vol. 112(C), pages 142-161.
    4. Ji, Bin & Zhang, Dezhi & Yu, Samson S. & Zhang, Binqiao, 2021. "Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective," European Journal of Operational Research, Elsevier, vol. 288(1), pages 47-62.
    5. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    7. Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heilemann, Ullrich & Stekler, Herman, 2007. "Introduction to "The future of macroeconomic forecasting"," International Journal of Forecasting, Elsevier, vol. 23(2), pages 159-165.
    2. Lawrence, John D. & Kaylen, Michael S., 1990. "Risk Management For Livestock Producers: Hedging And Contract Production," Staff Papers 13496, University of Minnesota, Department of Applied Economics.
    3. Belton M. Fleisher, 1981. "Minimum Wage Regulation in Retail Trade," Books, American Enterprise Institute, number 917628, September.
    4. Kao-Lee Llaw, 1976. "Sensitivity analysis of discrete-time interregional population systems," Demography, Springer;Population Association of America (PAA), vol. 13(4), pages 521-539, November.
    5. Roelof Helmers & Ričardas Zitikis, 1999. "On Estimation of Poisson Intensity Functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(2), pages 265-280, June.
    6. Mugglestone, Moira A. & Renshaw, Eric, 1996. "A practical guide to the spectral analysis of spatial point processes," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 43-65, January.
    7. Rubin, Thomas A. & Moore II, James E. & Lee, Shin, 1999. "Ten myths about US urban rail systems," Transport Policy, Elsevier, vol. 6(1), pages 57-73, January.
    8. Pradhan, Salil & Damodaran, Purushothaman & Srihari, Krishnaswami, 2008. "Predicting performance measures for Markovian type of manufacturing systems with product failures," European Journal of Operational Research, Elsevier, vol. 184(2), pages 725-744, January.
    9. Girish, Muckai K. & Hu, Jian-Qiang, 2000. "Higher order approximations for the single server queue with splitting, merging and feedback," European Journal of Operational Research, Elsevier, vol. 124(3), pages 447-467, August.
    10. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    11. Berkley, Blair J., 1996. "Analyzing service blueprints using phase distributions," European Journal of Operational Research, Elsevier, vol. 88(1), pages 152-164, January.
    12. Shin, Yang Woo & Moon, Dug Hee, 2011. "Approximation of M/M/c retrial queue with PH-retrial times," European Journal of Operational Research, Elsevier, vol. 213(1), pages 205-209, August.
    13. Wall, A.D. & Worthington, D.J., 2007. "Time-dependent analysis of virtual waiting time behaviour in discrete time queues," European Journal of Operational Research, Elsevier, vol. 178(2), pages 482-499, April.
    14. Ghanmi, Ahmed, 2006. "Modeling and analysis of a Canadian Forces Geomatics division workflow," European Journal of Operational Research, Elsevier, vol. 170(3), pages 1001-1016, May.
    15. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    16. Hui-Yu Zhang & Qing-Xin Chen & James MacGregor Smith & Ning Mao & Ai-Lin Yu & Zhan-Tao Li, 2017. "Performance analysis of open general queuing networks with blocking and feedback," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5760-5781, October.
    17. Yan Chen & Ward Whitt, 2020. "Algorithms for the upper bound mean waiting time in the GI/GI/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 327-356, April.
    18. Hallak, Bassam K. & Nasr, Walid W. & Jaber, Mohamad Y., 2021. "Re-ordering policies for inventory systems with recyclable items and stochastic demand – Outsourcing vs. in-house recycling," Omega, Elsevier, vol. 105(C).
    19. Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Hirotaka Sakasegawa, 1977. "An approximation formulaL q ≃α·ρ β /(1-ρ)," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 67-75, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:32:y:1998:i:1:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.