IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v195y2025ics0191261525000529.html
   My bibliography  Save this article

On the morning commute problem with mixed autonomous and human-driven traffic under stochastic bottleneck capacity

Author

Listed:
  • Liu, Qiumin
  • Liu, Wei
  • Jiang, Rui
  • Han, Xiao

Abstract

This paper investigates the impact of external uncertainty on morning commute behavior when autonomous vehicles (AVs) are introduced and interact with human-driven vehicles (HVs). We adopt the bottleneck model to study the morning commuting dynamics. In this context, we consider two potential benefits for AVs, i.e., value-of-time (VOT) compensation/reduction and capacity enhancement. We develop an extension-elimination-verification-supplement approach to simplify the equilibrium analysis process to obtain the equilibrium departure flow patterns. We find that the external uncertainty makes the equilibrium departure flow patterns more complicated than those under the deterministic setting, yielding three basic departure flow pattern types, i.e., AVs travel inside HVs, AVs travel after HVs, and HVs and AVs depart alternatively. If AVs are able to reduce VOT, their ability to improve bottleneck capacity does not qualitatively change the equilibrium departure flow patterns. Moreover, although increasing the penetration of AVs can improve the system performance to some degree, the total travel costs may not be monotonically decreasing with respect to AV penetration when AVs cannot significantly enhance bottleneck capacity. The optimal penetration rate of AVs minimizing the total travel costs is no less than 50% and the total travel costs reach the minimum in the situation with mixed HVs and AVs rather than in the 100% AV penetration if the bottleneck capacity enhancement caused by AVs is not significant enough. Furthermore, increasing the penetration of AVs may indeed increase traffic congestion when compared to that under 100% HVs if AVs cannot enhance bottleneck capacity sufficiently. To reduce total travel costs by increasing AV penetration, it is necessary to ensure that AVs can enhance bottleneck capacity sufficiently as the penetration rate of AVs increases when the adverse effects of VOT compensation on traffic congestion are dominated. When the penetration rate of AVs reaches 100%, the capacity enhancement from AVs should be sufficiently large to ensure that AVs can simultaneously improve the system performance and reduce traffic congestion.

Suggested Citation

  • Liu, Qiumin & Liu, Wei & Jiang, Rui & Han, Xiao, 2025. "On the morning commute problem with mixed autonomous and human-driven traffic under stochastic bottleneck capacity," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000529
    DOI: 10.1016/j.trb.2025.103203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261525000529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2025.103203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamotte, Raphaël & de Palma, André & Geroliminis, Nikolas, 2017. "On the use of reservation-based autonomous vehicles for demand management," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 205-227.
    2. Adler, Martin W. & Ommeren, Jos van & Rietveld, Piet, 2013. "Road congestion and incident duration," Economics of Transportation, Elsevier, vol. 2(4), pages 109-118.
    3. Zhang, Xiang & Liu, Wei & Levin, Michael & Travis Waller, S., 2023. "Equilibrium analysis of morning commuting and parking under spatial capacity allocation in the autonomous vehicle environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    4. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    5. Zhang, Xiang & Liu, Wei & Waller, S. Travis & Yin, Yafeng, 2019. "Modelling and managing the integrated morning-evening commuting and parking patterns under the fully autonomous vehicle environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 380-407.
    6. Dongdong He & Yang Liu & Qiuyan Zhong & David Z.W. Wang, 2022. "On the Morning Commute Problem in a Y-shaped Network with Individual and Household Travelers," Transportation Science, INFORMS, vol. 56(4), pages 848-876, July.
    7. Lindsey, Robin & Daniel, Terry & Gisches, Eyran & Rapoport, Amnon, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Theory," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 187-207.
    8. Fosgerau, Mogens, 2008. "Congestion costs in bottleneck equilibrium with stochastic capacity and demand," MPRA Paper 10040, University Library of Munich, Germany.
    9. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    10. Maryam Fayyaz & Esther González-González & Soledad Nogués, 2022. "Autonomous Mobility: A Potential Opportunity to Reclaim Public Spaces for People," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    11. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    12. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    13. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    14. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    15. Hani S. Mahmassani, 2016. "50th Anniversary Invited Article—Autonomous Vehicles and Connected Vehicle Systems: Flow and Operations Considerations," Transportation Science, INFORMS, vol. 50(4), pages 1140-1162, November.
    16. Jiancheng Long & Hai Yang & W. Y. Szeto, 2022. "Departure Time Choice Equilibrium and Tolling Strategies for a Bottleneck with Stochastic Capacity," Transportation Science, INFORMS, vol. 56(1), pages 79-102, January.
    17. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    18. Hua Wang & Jing Wang & Shukai Chen & Qiang Meng, 2023. "Equilibrium Traffic Dynamics with Mixed Autonomous and Human-Driven Vehicles and Novel Traffic Management Policies: The Effects of Value-of-Time Compensation and Random Road Capacity," Transportation Science, INFORMS, vol. 57(5), pages 1177-1208, September.
    19. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    20. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1999. "Information and time-of-usage decisions in the bottleneck model with stochastic capacity and demand," European Economic Review, Elsevier, vol. 43(3), pages 525-548, March.
    21. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1992. "Route choice with heterogeneous drivers and group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 71-102, March.
    22. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    23. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    24. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    25. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    26. Xiaojuan Yu & Vincent A.C. van den Berg & Erik T. Verhoef, 2022. "Autonomous cars and activity-based bottleneck model: How do in-vehicle activities determine aggregate travel patterns?," Tinbergen Institute Discussion Papers 22-004/VIII, Tinbergen Institute.
    27. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    28. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Tang, Zhe-Yi & Tian, Li-Jun & Liu, Peng & Huang, Hai-Jun, 2025. "Parking reservation scheme in a commuting system with shared autonomous vehicles and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    3. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Zhang, Yuan & Zhao, Hui & Jiang, Rui, 2024. "Manage morning commute for household travels with parking space constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    5. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T. & Li, Zhi-Chun, 2022. "Will all autonomous cars cooperate? Brands’ strategic interactions under dynamic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    7. Han, Xiao & Yu, Yun & Gao, Zi-You & Zhang, H. Michael, 2021. "The value of pre-trip information on departure time and route choice in the morning commute under stochastic traffic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 205-226.
    8. Liu, Qiumin & van den Berg, Vincent A.C. & Verhoef, Erik T. & Jiang, Rui, 2025. "Pricing in the stochastic bottleneck model with price-sensitive demand," Transportation Research Part B: Methodological, Elsevier, vol. 194(C).
    9. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
    10. Tian, Li-Jun & Tang, Zhe-Yi & Liu, Peng & Huang, Hai-Jun, 2024. "Parking policy design for managing morning commute with dedicated autonomous vehicle lane," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    11. Liu, Yang & Li, Yuanyuan & Hu, Lu, 2018. "Departure time and route choices in bottleneck equilibrium under risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 774-793.
    12. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2025. "Preference heterogeneity in a dynamic flow congestion model," Transportation Research Part B: Methodological, Elsevier, vol. 195(C).
    13. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
    14. Fan, Wenbo & Xiao, Feng & Nie, Yu (Macro), 2022. "Managing bottleneck congestion with tradable credits under asymmetric transaction cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    15. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
    16. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    17. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    18. Amirgholy, Mahyar & Gonzales, Eric J., 2017. "Efficient frontier of route choice for modeling the equilibrium under travel time variability with heterogeneous traveler preferences," Economics of Transportation, Elsevier, vol. 11, pages 1-14.
    19. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    20. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:195:y:2025:i:c:s0191261525000529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.