IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v14y1980i1-2p79-86.html
   My bibliography  Save this article

The effects of network structure on reliability of transit service

Author

Listed:
  • Turnquist, Mark A.
  • Bowman, Larry A.

Abstract

A set of simulation experiments are described which have been constructed to investigate the effects on service reliability of several characteristics of network structure in urban bus systems. Principal focus is on the factors which lead to vehicle bunching, and on the effects of network form and route density on transfers. The results of these experiments highlight the importance of controlling link travel time variability, and of scheduling to ensure expeditious transferring, especially in radial networks.

Suggested Citation

  • Turnquist, Mark A. & Bowman, Larry A., 1980. "The effects of network structure on reliability of transit service," Transportation Research Part B: Methodological, Elsevier, vol. 14(1-2), pages 79-86.
  • Handle: RePEc:eee:transb:v:14:y:1980:i:1-2:p:79-86
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(80)90034-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Vitale & Giuseppe Guido & Daniele Rogano, 2016. "A smartphone based DSS platform for assessing transit service attributes," Public Transport, Springer, vol. 8(2), pages 315-340, September.
    2. Hall, Randolph & Dessouky, Maged & Zhang, Lei & Singh, Ajay & Patel, Vishal, 1999. "Evaluation of ITS Technology for Bus Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2nq1824t, Institute of Transportation Studies, UC Berkeley.
    3. N. Oort, 2016. "Incorporating enhanced service reliability of public transport in cost-benefit analyses," Public Transport, Springer, vol. 8(1), pages 143-160, March.
    4. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "A Dynamic Holding Strategy to Improve Bus ScheduleReliability and Commercial Speed," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0jp7c8k8, Institute of Transportation Studies, UC Berkeley.
    5. Sandip Chakrabarti & Genevieve Giuliano, 2014. "Does service reliability influence transit patronage? Evidence from Los Angeles, and implications for transit policy," Working Paper 9297, USC Lusk Center for Real Estate.
    6. Oliver Ullrich & Daniel Lückerath & Ewald Speckenmeyer, 2016. "Do regular timetables help to reduce delays in tram networks? It depends!," Public Transport, Springer, vol. 8(1), pages 39-56, March.
    7. Nocera, Silvio & Fabio, Alberto & Cavallaro, Federico, 2020. "The adoption of grid transit networks in non-metropolitan contexts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 256-272.
    8. Dessouky, Maged & Hall, Randolph & Zhang, Lei & Singh, Ajay, 2003. "Real-time control of buses for schedule coordination at a terminal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(2), pages 145-164, February.
    9. Gu, Weihua & Cassidy, Michael J., 2013. "Maximizing bus discharge flows from multi-berth stops by regulating exit maneuvers," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 254-264.
    10. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    11. Dessouky, Maged & Singh, Ajay & Hall, Randolph, 1997. "Transit ITS Simulator (TRANSITS): Design Document," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt49k184rv, Institute of Transportation Studies, UC Berkeley.
    12. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "Dynamic bus holding strategies for schedule reliability: Optimal linear control and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1831-1845.
    13. Hall, Randolph & Dessouky, Maged & Nowroozi, Ali & Singh, A., 1997. "Evaluation Of ITS Technology For Bus Timed Transfers," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1wq2v1p4, Institute of Transportation Studies, UC Berkeley.
    14. Brunilde Sansò & Luc Milot, 1999. "Performability of a Congested Urban Transportation Network When Accident Information is Available," Transportation Science, INFORMS, vol. 33(1), pages 68-79, February.
    15. Mohammad-Reza Namazi-Rad & Michelle Dunbar & Hadi Ghaderi & Payam Mokhtarian, 2015. "Constrained Optimization of Average Arrival Time via a Probabilistic Approach to Transport Reliability," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    16. Hadas, Yuval & Nahum, Oren E., 2016. "Urban bus network of priority lanes: A combined multi-objective, multi-criteria and group decision-making approach," Transport Policy, Elsevier, vol. 52(C), pages 186-196.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:14:y:1980:i:1-2:p:79-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.