IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v133y2020icp142-164.html
   My bibliography  Save this article

An optimisation framework for airline fleet maintenance scheduling with tail assignment considerations

Author

Listed:
  • Sanchez, David Torres
  • Boyacı, Burak
  • Zografos, Konstantinos G.

Abstract

Fierce competition between airlines has led to the need of minimising the operating costs while also ensuring quality of service. Given the large proportion of operating costs dedicated to aircraft maintenance, cooperation between airlines and their respective maintenance provider is paramount. In this research, we propose a framework to develop commercially viable and maintenance feasible flight and maintenance schedules. Such framework involves two multi-objective mixed integer linear programming (MMILP) formulations and an iterative algorithm. The first formulation, the airline fleet maintenance scheduling (AMS) with violations, minimises the number of maintenance regulation violations and the number of not airworthy aircraft; subject to limited workshop resources and current maintenance regulations on individual aircraft flying hours. The second formulation, the AMS with tail assignment (TA) allows aircraft to be assigned to different flights. In this case, subject to similar constraints as the first formulation, six lexicographically ordered objective functions are minimised. Namely, the number of violations, maximum resource level, number of tail reassignments, number of maintenance interventions, overall resource usage, and the amount of maintenance required by each aircraft at the end of the planning horizon. The iterative algorithm ensures fast computational times while providing good quality solutions. Additionally, by tracking aircraft and using precise flying hours between maintenance opportunities, we ensure that the aircraft are airworthy at all times. Computational tests on real flight schedules over a 30-day planning horizon show that even with multiple airlines and workshops (16000 flights, 529 aircraft, 8 maintenance workshops), our solution approach can construct near-optimal maintenance schedules within minutes.

Suggested Citation

  • Sanchez, David Torres & Boyacı, Burak & Zografos, Konstantinos G., 2020. "An optimisation framework for airline fleet maintenance scheduling with tail assignment considerations," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 142-164.
  • Handle: RePEc:eee:transb:v:133:y:2020:i:c:p:142-164
    DOI: 10.1016/j.trb.2019.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261519302000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ram Gopalan & Kalyan T. Talluri, 1998. "The Aircraft Maintenance Routing Problem," Operations Research, INFORMS, vol. 46(2), pages 260-271, April.
    2. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    3. Kalyan T. Talluri, 1998. "The Four-Day Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 32(1), pages 43-53, February.
    4. Lloyd Clarke & Ellis Johnson & George Nemhauser & Zhongxi Zhu, 1997. "The aircraft rotation problem," Annals of Operations Research, Springer, vol. 69(0), pages 33-46, January.
    5. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.
    6. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    7. Tritschler, Martin & Naber, Anulark & Kolisch, Rainer, 2017. "A hybrid metaheuristic for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 262(1), pages 262-273.
    8. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Thomas A. Feo & Jonathan F. Bard, 1989. "Flight Scheduling and Maintenance Base Planning," Management Science, INFORMS, vol. 35(12), pages 1415-1432, December.
    10. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    11. Amos Levin, 1971. "Scheduling and Fleet Routing Models for Transportation Systems," Transportation Science, INFORMS, vol. 5(3), pages 232-255, August.
    12. Mohamed Haouari & Shengzhi Shao & Hanif D. Sherali, 2013. "A Lifted Compact Formulation for the Daily Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 47(4), pages 508-525, November.
    13. Richard Hicks & Richard Madrid & Chris Milligan & Robert Pruneau & Mike Kanaley & Yvan Dumas & Benoit Lacroix & Jacques Desrosiers & François Soumis, 2005. "Bombardier Flexjet Significantly Improves Its Fractional Aircraft Ownership Operations," Interfaces, INFORMS, vol. 35(1), pages 49-60, February.
    14. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    15. Guy Desaulniers & Jacques Desrosiers & Yvan Dumas & Marius M. Solomon & François Soumis, 1997. "Daily Aircraft Routing and Scheduling," Management Science, INFORMS, vol. 43(6), pages 841-855, June.
    16. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    17. Safaei, Nima & Jardine, Andrew K.S., 2018. "Aircraft routing with generalized maintenance constraints," Omega, Elsevier, vol. 80(C), pages 111-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajendran, Suchithra & Srinivas, Sharan, 2020. "Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    2. Saltzman, Robert M. & Stern, Helman I., 2022. "The multi-day aircraft maintenance routing problem," Journal of Air Transport Management, Elsevier, vol. 102(C).
    3. Qin, Yichen & Ng, Kam K.H., 2023. "Analysing the impact of collaborations between airlines and maintenance service company under MRO outsourcing mode: Perspective from airline's operations," Journal of Air Transport Management, Elsevier, vol. 109(C).
    4. Dominik Punda & Malgorzata Jasiulewicz-Kaczmarek & Jacek Dziwulski, 2021. "Economization Methods Used by Low-Cost Airlines – An Overview," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 301-310.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safaei, Nima & Jardine, Andrew K.S., 2018. "Aircraft routing with generalized maintenance constraints," Omega, Elsevier, vol. 80(C), pages 111-122.
    2. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    3. Başdere, Mehmet & Bilge, Ümit, 2014. "Operational aircraft maintenance routing problem with remaining time consideration," European Journal of Operational Research, Elsevier, vol. 235(1), pages 315-328.
    4. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    5. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    6. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.
    7. Mohamed Haouari & Shengzhi Shao & Hanif D. Sherali, 2013. "A Lifted Compact Formulation for the Daily Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 47(4), pages 508-525, November.
    8. Gopalan, Ram, 2014. "The Aircraft Maintenance Base Location Problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 634-642.
    9. Parmentier, Axel & Meunier, Frédéric, 2020. "Aircraft routing and crew pairing: Updated algorithms at Air France," Omega, Elsevier, vol. 93(C).
    10. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    11. Maher, Stephen J. & Desaulniers, Guy & Soumis, François, 2018. "The daily tail assignment problem under operational uncertainty using look-ahead maintenance constraints," European Journal of Operational Research, Elsevier, vol. 264(2), pages 534-547.
    12. Zhe Liang & Wanpracha Art Chaovalitwongse & Huei Chuen Huang & Ellis L. Johnson, 2011. "On a New Rotation Tour Network Model for Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 45(1), pages 109-120, February.
    13. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    14. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    15. Shaukat, Syed & Katscher, Mathias & Wu, Cheng-Lung & Delgado, Felipe & Larrain, Homero, 2020. "Aircraft line maintenance scheduling and optimisation," Journal of Air Transport Management, Elsevier, vol. 89(C).
    16. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    17. Yu Zhou & Leishan Zhou & Yun Wang & Zhuo Yang & Jiawei Wu, 2017. "Application of Multiple-Population Genetic Algorithm in Optimizing the Train-Set Circulation Plan Problem," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    18. Saltzman, Robert M. & Stern, Helman I., 2022. "The multi-day aircraft maintenance routing problem," Journal of Air Transport Management, Elsevier, vol. 102(C).
    19. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    20. Xiao, Fan & Guo, Siqi & Huang, Lin & Huang, Lei & Liang, Zhe, 2022. "Integrated aircraft tail assignment and cargo routing problem with through cargo consideration," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 328-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:133:y:2020:i:c:p:142-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.