IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v126y2019icp353-364.html
   My bibliography  Save this article

Instability of departure time choice problem: A case with replicator dynamics

Author

Listed:
  • Iryo, Takamasa

Abstract

Stability is an important condition for equilibrium solutions to be realised in a real transport system. If the solution is not stable, it is vulnerable to a small perturbation onto the system, and consequently equilibrium would not be observed in the real world. While it has been known that an equilibrium solution of a static equilibrium assignment problem is stable in a various types of evolution dynamics with mild conditions, the stability of solutions in dynamic user equilibrium (DUE) assignments has rarely been investigated. This study proves that an equilibrium solution of the departure time choice problem is not Lyapunov stable when the replicator dynamics is employed. As the uniqueness of the equilibrium solution has been proven, it can be concluded that there is no stable equilibrium solution in the departure time choice problem when the replicator dynamics is assumed as an evolution dynamics.

Suggested Citation

  • Iryo, Takamasa, 2019. "Instability of departure time choice problem: A case with replicator dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 353-364.
  • Handle: RePEc:eee:transb:v:126:y:2019:i:c:p:353-364
    DOI: 10.1016/j.trb.2018.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517300905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    2. Yang, Fan & Zhang, Ding, 2009. "Day-to-day stationary link flow pattern," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 119-126, January.
    3. Mounce, Richard, 2006. "Convergence in a continuous dynamic queueing model for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 779-791, November.
    4. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    5. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
    6. Hofbauer, Josef & Sandholm, William H., 2007. "Evolution in games with randomly disturbed payoffs," Journal of Economic Theory, Elsevier, vol. 132(1), pages 47-69, January.
    7. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    8. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    9. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    10. Iryo, Takamasa, 2016. "Day-to-day dynamical model incorporating an explicit description of individuals’ information collection behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 88-103.
    11. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    12. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    13. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    14. Michael J. Smith, 1984. "The Existence of a Time-Dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 18(4), pages 385-394, November.
    15. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    16. Sandholm, William H., 2003. "Evolution and equilibrium under inexact information," Games and Economic Behavior, Elsevier, vol. 44(2), pages 343-378, August.
    17. Zhang, Ding & Nagurney, Anna, 1996. "On the local and global stability of a travel route choice adjustment process," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 245-262, August.
    18. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    2. Iryo, Takamasa & Smith, Michael J. & Watling, David, 2020. "Stabilisation strategy for unstable transport systems under general evolutionary dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 136-151.
    3. Lamotte, Raphaël & Geroliminis, Nikolas, 2021. "Monotonicity in the trip scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 14-25.
    4. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    5. Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    6. Jin, Wen-Long, 2021. "Stable local dynamics for day-to-day departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 463-479.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iryo, Takamasa, 2016. "Day-to-day dynamical model incorporating an explicit description of individuals’ information collection behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 88-103.
    2. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    3. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    4. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
    5. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    6. Iryo, Takamasa & Smith, Michael J. & Watling, David, 2020. "Stabilisation strategy for unstable transport systems under general evolutionary dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 136-151.
    7. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
    8. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    9. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
    10. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    11. Watling, David P., 2016. "A route-swapping dynamical system and Lyapunov function for stochastic user equilibriumAuthor-Name: Smith, Michael J," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 132-141.
    12. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
    13. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.
    14. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    15. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    16. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    17. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    18. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    19. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    20. Li, Ruijie & Liu, Xiaobo & Nie, Yu (Marco), 2018. "Managing partially automated network traffic flow: Efficiency vs. stability," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 300-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:126:y:2019:i:c:p:353-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.