IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v118y2018icp429-456.html
   My bibliography  Save this article

A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis

Author

Listed:
  • Li, Xiaopeng
  • Ghiasi, Amir
  • Xu, Zhigang
  • Qu, Xiaobo

Abstract

This paper formulates a simplified traffic smoothing model for guiding movements of connected automated vehicles on a general one-lane highway segment. Adapted from the shooting heuristic proposed by Zhou et al. (2017) and Ma et al. (2017), this model confines each vehicle’s trajectory as a piecewise quadratic function with no more than five pieces and lets all trajectories in the same platoon share identical acceleration and deceleration rates. Similar to the shooting heuristic, the proposed simplified model is able to control the overall smoothness of a platoon of connected automated vehicles and approximately optimize traffic performance in terms of fuel efficiency and driving comfort. While the shooting heuristic relies on numerical meta-heuristic algorithms that cannot ensure solution optimality, we discover a set of elegant theoretical properties for the general objective function and the associated constraints in the proposed simplified model, and consequentially propose an efficient analytical algorithm for solving this problem to the exact optimum. Interestingly, this exact algorithm has intuitive physical interpretations, i.e., stretching the transitional parts of the trajectories (i.e., parts with acceleration and deceleration adjustments) as far as they reach the upstream end of the investigated segment, and then balancing the acceleration and deceleration magnitudes as close as possible. This analytical exact model can be considered as a core module to a range of general trajectory optimization problems at various infrastructure settings. Numerical examples reveal that this exact algorithm has much more efficient computational performance and the same or better solution quality compared with the previously proposed shooting heuristic. These examples also illustrate how to apply this model to CAV control problems on signalized segments and at non-stop intersections. Further, we study a homogeneous special case of this model and analytically formulate the relationship between queue propagation and trajectory smoothing. One counter-intuitive finding is that trajectory smoothing may not always cause longer queue propagation but instead may mitigate queue propagation with appropriate settings. This theoretical finding has valuable implications to joint optimization of queuing management and traffic smoothing in complex transportation networks.

Suggested Citation

  • Li, Xiaopeng & Ghiasi, Amir & Xu, Zhigang & Qu, Xiaobo, 2018. "A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 429-456.
  • Handle: RePEc:eee:transb:v:118:y:2018:i:c:p:429-456
    DOI: 10.1016/j.trb.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517308561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    2. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    3. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    4. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    5. Ma, Jiaqi & Li, Xiaopeng & Zhou, Fang & Hu, Jia & Park, B. Brian, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 421-441.
    6. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    7. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    8. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    9. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Xiaowei & Li, Xiaopeng, 2023. "Trajectory Planning for an Autonomous Vehicle with Conflicting Moving Objects Along a Fixed Path – An Exact Solution Method," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 228-246.
    2. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    3. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    4. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    5. Nicola Roveri & Antonio Carcaterra & Leonardo Molinari & Gianluca Pepe, 2020. "Safe and Secure Control of Swarms of Vehicles by Small-World Theory," Energies, MDPI, vol. 13(5), pages 1-28, February.
    6. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    7. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    2. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    3. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.
    4. Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Yu Wang & Xiaopeng Li & Junfang Tian & Rui Jiang, 2020. "Stability Analysis of Stochastic Linear Car-Following Models," Transportation Science, INFORMS, vol. 54(1), pages 274-297, January.
    7. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    8. Li, Xiaopeng, 2022. "Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 1-18.
    9. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    10. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    11. Xu, Yueru & Zheng, Yuan & Yang, Ying, 2021. "On the movement simulations of electric vehicles: A behavioral model-based approach," Applied Energy, Elsevier, vol. 283(C).
    12. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    13. Zhao, Shuaidong & Zhang, Kuilin, 2020. "A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditi," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 144-178.
    14. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    15. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part II: Theoretical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 199-216.
    16. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    17. Li, Zhen-Hua & Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhu, Kai-Xuan & Di Pace, Roberta, 2022. "Empirical and simulation study on traffic oscillation characteristic using floating car data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    18. Zhou, Linjie & Ruan, Tiancheng & Ma, Ke & Dong, Changyin & Wang, Hao, 2021. "Impact of CAV platoon management on traffic flow considering degradation of control mode," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    19. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    20. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:118:y:2018:i:c:p:429-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.