IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v64y2014icp122-134.html
   My bibliography  Save this article

Unraveling the evacuation behavior of the medically fragile population: Findings from hurricane Irene

Author

Listed:
  • Ng, ManWo
  • Behr, Joshua
  • Diaz, Rafael

Abstract

Despite the widely recognized importance of evacuation planning for residents with special needs – in this paper referred to as the medically fragile population – there is virtually no research available to guide such planning, as opposed to the numerous empirical research studies on the evacuation behavior of the general population. In this paper, we provide these long-overdue insights using data from a large-scale phone survey (over 7000 samples) conducted in the aftermath of hurricane Irene in the Hampton Roads region in Virginia. Via aggregate and disaggregate analyses, we start to unravel the behavior of this heavily understudied, and potentially vulnerable population group. Special emphasis will be placed on the differences between the medically fragile and non-medically fragile population. Two alternative definitions for what constitutes medically fragile are examined in this paper. Using the broader definition, it was found that a key difference between these two groups relates to the importance of having a strong network of family members in the area. When considering a more narrow definition, we found that being a single parent household, likelihood of neighborhood flooding and knowing most of the names of one’s neighbors have significantly different impacts on the two population groups.

Suggested Citation

  • Ng, ManWo & Behr, Joshua & Diaz, Rafael, 2014. "Unraveling the evacuation behavior of the medically fragile population: Findings from hurricane Irene," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 122-134.
  • Handle: RePEc:eee:transa:v:64:y:2014:i:c:p:122-134
    DOI: 10.1016/j.tra.2014.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856414000809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2014.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ng, ManWo & Waller, S. Travis, 2010. "Reliable evacuation planning via demand inflation and supply deflation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1086-1094, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsiang-Chieh Lee & Hongey Chen, 2018. "Social determinants in choice of shelter: an evidence-based analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1277-1294, September.
    2. Ng, ManWo & Diaz, Rafael & Behr, Joshua, 2015. "Departure time choice behavior for hurricane evacuation planning: The case of the understudied medically fragile population," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 215-226.
    3. Ma. Lim & Hector Lim & Mongkut Piantanakulchai & Francis Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.
    4. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    5. David S. Dixon & Pallab Mozumder & William F. Vásquez & Hugh Gladwin, 2017. "Heterogeneity Within and Across Households in Hurricane Evacuation Response," Networks and Spatial Economics, Springer, vol. 17(2), pages 645-680, June.
    6. Ma. Bernadeth B. Lim & Hector R. Lim & Mongkut Piantanakulchai & Francis Aldrine Uy, 2016. "A household-level flood evacuation decision model in Quezon City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1539-1561, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    2. Pruttipong Apivatanagul & Rachel Davidson & Linda Nozick, 2012. "Bi-level optimization for risk-based regional hurricane evacuation planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 567-588, January.
    3. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    4. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    5. Alf Kimms & Marc Maiwald, 2017. "An exact network flow formulation for cell‐based evacuation in urban areas," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(7), pages 547-555, October.
    6. Ng, ManWo & Khattak, Asad & Talley, Wayne K., 2013. "Modeling the time to the next primary and secondary incident: A semi-Markov stochastic process approach," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 44-57.
    7. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    8. Ng, ManWo & Diaz, Rafael & Behr, Joshua, 2015. "Departure time choice behavior for hurricane evacuation planning: The case of the understudied medically fragile population," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 215-226.
    9. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    10. Karabuk, Suleyman & Manzour, Hasan, 2019. "A multi-stage stochastic program for evacuation management under tornado track uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 128-151.
    11. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    12. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.
    13. Zhengfeng Huang & Pengjun Zheng & Gang Ren & Yang Cheng & Bin Ran, 2016. "Simultaneous optimization of evacuation route and departure time based on link-congestion mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 575-599, August.
    14. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    15. Hadas, Yuval & Laor, Amir, 2013. "Network design model with evacuation constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 1-9.
    16. Wang, Qingyi & Wallace, Stein W., 2022. "Non-compliance in transit-based evacuation pick-up point assignments," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    17. Jian Li & Kaan Ozbay, 2015. "Evacuation Planning with Endogenous Transportation Network Degradations: A Stochastic Cell-Based Model and Solution Procedure," Networks and Spatial Economics, Springer, vol. 15(3), pages 677-696, September.
    18. Hediye Tuydes-Yaman & Athanasios Ziliaskopoulos, 2014. "Modeling demand management strategies for evacuations," Annals of Operations Research, Springer, vol. 217(1), pages 491-512, June.
    19. Ng, ManWo, 2013. "Partial link flow observability in the presence of initial sensors: Solution without path enumeration," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 62-66.
    20. Gino J. Lim & M. Reza Baharnemati & Seon Jin Kim, 2016. "An optimization approach for real time evacuation reroute planning," Annals of Operations Research, Springer, vol. 238(1), pages 375-388, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:64:y:2014:i:c:p:122-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.