IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp99-119.html
   My bibliography  Save this article

People’s current mobility costs and willingness to pay for Mobility as a Service offerings

Author

Listed:
  • Liljamo, Timo
  • Liimatainen, Heikki
  • Pöllänen, Markus
  • Utriainen, Roni

Abstract

Mobility as a Service (MaaS) is a concept that is based on the idea of providing customers with comprehensive mobility services by seamlessly combining various modes of transport. The scientific research on this theme has increased considerably over the last few years, but very little research has so far been conducted on people’s willingness to pay for new MaaS services. This study presents the results of a survey (representative sample size 6,000, number of respondents 1,176, response rate 19.6%) conducted in Finland regarding people’s willingness to pay for MaaS offerings. The study also estimates the current mobility costs of the respondents and relates their willingness to pay for MaaS to their mobility costs. Analysis includes also a linear regression model of willingness to pay for MaaS. As a result of the study, it was found that 43% of the respondents would be willing to adopt a mobility package, assuming it could cover all mobility needs of the respondent. For such a mobility package, the respondents were willing to pay approximately €140 on average, while their relative willingness to pay was an average of approximately 64% of their current mobility costs. However, it should be noted that due the limitations of the study, the results are mostly indicative and further research is called for to grasp the multifaceted qualitative elements related to willingness to pay for MaaS. This study shows some significant variation between user groups in the respondents’ willingness to pay relative to their estimated mobility costs, as well as their absolute willingness to pay. The variation maybe due to the fact that MaaS is still largely unknown as a concept and the challenge that the mobility package which fulfils individual needs differs from person to person. According to the results, MaaS should lower the mobility costs for users in order to be financially attractive.

Suggested Citation

  • Liljamo, Timo & Liimatainen, Heikki & Pöllänen, Markus & Utriainen, Roni, 2020. "People’s current mobility costs and willingness to pay for Mobility as a Service offerings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 99-119.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:99-119
    DOI: 10.1016/j.tra.2020.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419308262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Chinh Q. & Hensher, David A. & Mulley, Corinne & Wong, Yale Z., 2018. "Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 302-318.
    2. Lyons, Glenn & Hammond, Paul & Mackay, Kate, 2019. "The importance of user perspective in the evolution of MaaS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 22-36.
    3. Marine Le Gall-Ely, 2009. "Definition, Measurement and Determinants of the Consumer's Willingness to Pay: a Critical Synthesis and Directions for Further Research," Post-Print hal-00522828, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Muller & Seri Park & Ross Lee & Brett Fusco & Gonçalo Homem de Almeida Correia, 2021. "Review of Whole System Simulation Methodologies for Assessing Mobility as a Service (MaaS) as an Enabler for Sustainable Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    2. Yinying He & Csaba Csiszár, 2021. "Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, May.
    3. Tsouros, Ioannis & Tsirimpa, Athena & Pagoni, Ioanna & Polydoropoulou, Amalia, 2021. "MaaS users: Who they are and how much they are willing-to-pay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 470-480.
    4. Lopez-Carreiro, Iria & Monzon, Andres & Lopez, Elena & Lopez-Lambas, Maria Eugenia, 2020. "Urban mobility in the digital era: An exploration of travellers' expectations of MaaS mobile-technologies," Technology in Society, Elsevier, vol. 63(C).
    5. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    6. Timo Liljamo & Heikki Liimatainen & Markus Pöllänen & Riku Viri, 2021. "The Effects of Mobility as a Service and Autonomous Vehicles on People’s Willingness to Own a Car in the Future," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    7. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
    8. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    9. Basu, Rounaq & Ferreira, Joseph, 2021. "Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19," Transport Policy, Elsevier, vol. 103(C), pages 197-210.
    10. Ho, Chinh Q. & Hensher, David A. & Reck, Daniel J. & Lorimer, Sam & Lu, Ivy, 2021. "MaaS bundle design and implementation: Lessons from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 339-376.
    11. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    12. van 't Veer, Renske & Annema, Jan Anne & Araghi, Yashar & Homem de Almeida Correia, Gonçalo & van Wee, Bert, 2023. "Mobility-as-a-Service (MaaS): A latent class cluster analysis to identify Dutch vehicle owners’ use intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    2. Lopez-Carreiro, Iria & Monzon, Andres & Lopez, Elena & Lopez-Lambas, Maria Eugenia, 2020. "Urban mobility in the digital era: An exploration of travellers' expectations of MaaS mobile-technologies," Technology in Society, Elsevier, vol. 63(C).
    3. Storme, Tom & De Vos, Jonas & De Paepe, Leen & Witlox, Frank, 2020. "Limitations to the car-substitution effect of MaaS. Findings from a Belgian pilot study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 196-205.
    4. Kriswardhana, Willy & Esztergár-Kiss, Domokos, 2023. "Exploring the aspects of MaaS adoption based on college students’ preferences," Transport Policy, Elsevier, vol. 136(C), pages 113-125.
    5. Hensher, David A. & Ho, Chinh Q. & Reck, Daniel J., 2021. "Mobility as a service and private car use: Evidence from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 17-33.
    6. Iria Lopez-Carreiro & Andres Monzon & Elena Lopez, 2023. "MaaS Implications in the Smart City: A Multi-Stakeholder Approach," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    7. Kayikci, Yasanur & Kabadurmus, Ozgur, 2022. "Barriers to the adoption of the mobility-as-a-service concept: The case of Istanbul, a large emerging metropolis," Transport Policy, Elsevier, vol. 129(C), pages 219-236.
    8. Reck, Daniel J. & Hensher, David A. & Ho, Chinh Q., 2020. "MaaS bundle design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 485-501.
    9. Kim, Eui-Jin & Kim, Youngseo & Jang, Sunghoon & Kim, Dong-Kyu, 2021. "Tourists’ preference on the combination of travel modes under Mobility-as-a-Service environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 236-255.
    10. Chen, Ching-Fu & Fu, Chiang & Chen, Yu-Chun, 2023. "Exploring tourist preference for Mobility-as-a-Service (MaaS) – A latent class choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    11. Ho, Chinh Q. & Hensher, David A. & Reck, Daniel J. & Lorimer, Sam & Lu, Ivy, 2021. "MaaS bundle design and implementation: Lessons from the Sydney MaaS trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 339-376.
    12. Panagiotis Georgakis & Adel Almohammad & Efthimios Bothos & Babis Magoutas & Kostantina Arnaoutaki & Gregoris Mentzas, 2020. "Heuristic-Based Journey Planner for Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    13. Zijlstra, Toon & Durand, Anne & Hoogendoorn-Lanser, Sascha & Harms, Lucas, 2020. "Early adopters of Mobility-as-a-Service in the Netherlands," Transport Policy, Elsevier, vol. 97(C), pages 197-209.
    14. Ho, Chinh Q. & Mulley, Corinne & Hensher, David A., 2020. "Public preferences for mobility as a service: Insights from stated preference surveys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 70-90.
    15. Debora Bettiga & Lucio Lamberti & Emanuele Lettieri, 2020. "Individuals’ adoption of smart technologies for preventive health care: a structural equation modeling approach," Health Care Management Science, Springer, vol. 23(2), pages 203-214, June.
    16. Benjamin Maas, 2022. "Literature Review of Mobility as a Service," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    17. Fenna Arnoldussen & Mark J. Koetse & Sander M. de Bruyn & Onno Kuik, 2022. "What Are People Willing to Pay for Social Sustainability? A Choice Experiment among Dutch Consumers," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    18. Agossadou, A.J. & Fiamohe, R. & Tossou, H. & Kinkpe, T., 2018. "Agribusiness opportunities for youth in Nigeria: Farmers perceptions and willingness to pay for mechanized harvesting equipment," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277553, International Association of Agricultural Economists.
    19. Sanjay Gupta & Kushagra Sinha, 2022. "Assessing the Factors Impacting Transport Usage of Mobility App Users in the National Capital Territory of Delhi, India," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    20. Mulley, Corinne & Nelson, John D. & Ho, Chinh & Hensher, David A., 2023. "MaaS in a regional and rural setting: Recent experience," Transport Policy, Elsevier, vol. 133(C), pages 75-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:99-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.