IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v128y2019icp59-72.html
   My bibliography  Save this article

Applying space syntax for surface rapid transit planning

Author

Listed:
  • Lebendiger, Yonatan
  • Lerman, Yoav

Abstract

This paper presents a technique aimed to assist in planning of surface rapid transit alignment in a metropolitan area by applying space syntax configurational approach. The technique proposed in this study was applied to the proposed surface rapid transit network for the Metropolitan Area of Tel Aviv. For this research a bi-modal model of the spatial structure, which includes the street network as well as the planned rapid transit routes, was analyzed. The results show that that a substantial share of the network’s alignment can be described solely by measuring through-movement potentials. This finding demonstrates the significant role of spatial accessibility analysis in transit planning. Consequently, this study provides a reproducible methodology for identifying the routes which hold the highest potential to serve as strategic movement corridors at a metropolitan scale, thus improving current RTS (Rapid Transit System) planning practice.

Suggested Citation

  • Lebendiger, Yonatan & Lerman, Yoav, 2019. "Applying space syntax for surface rapid transit planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 59-72.
  • Handle: RePEc:eee:transa:v:128:y:2019:i:c:p:59-72
    DOI: 10.1016/j.tra.2019.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418301897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Hickman, Robin & Hall, Peter & Banister, David, 2013. "Planning more for sustainable mobility," Journal of Transport Geography, Elsevier, vol. 33(C), pages 210-219.
    3. Hickman, Robin & Saxena, Sharad & Banister, David & Ashiru, Olu, 2012. "Examining transport futures with scenario analysis and MCA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 560-575.
    4. A Penn & B Hillier & D Banister & J Xu, 1998. "Configurational Modelling of Urban Movement Networks," Environment and Planning B, , vol. 25(1), pages 59-84, February.
    5. Moshe Givoni & Eda Beyazit & Yoram Shiftan, 2016. "The use of state-of-the-art transport models by policymakers – beauty in simplicity?," Planning Theory & Practice, Taylor & Francis Journals, vol. 17(3), pages 385-404, July.
    6. Laporte, G. & Mesa, J.A. & Ortega, F.A. & Perea, F., 2011. "Planning rapid transit networks," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 95-104, September.
    7. Alasdair Turner, 2007. "From Axial to Road-Centre Lines: A New Representation for Space Syntax and a New Model of Route Choice for Transport Network Analysis," Environment and Planning B, , vol. 34(3), pages 539-555, June.
    8. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    9. Alasdair Turner & Alan Penn & Bill Hillier, 2005. "An Algorithmic Definition of the Axial Map," Environment and Planning B, , vol. 32(3), pages 425-444, June.
    10. Banister, David, 2008. "The sustainable mobility paradigm," Transport Policy, Elsevier, vol. 15(2), pages 73-80, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ningling Xie & Bin Cheng, 2023. "The Impact of Urban Expressways on the Street Space of Traditional Tibetan Villages in Kham, Taking Daofu County as an Example," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Yu Han & Chaoyue Yu & Zhe Feng & Hanchu Du & Caisi Huang & Kening Wu, 2021. "Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification—Taking Ningbo, China, as an Example," Land, MDPI, vol. 10(4), pages 1-16, April.
    3. Zhou, You & Zhang, Lingzhu & JF Chiaradia, Alain, 2022. "Estimating wider economic impacts of transport infrastructure Investment: Evidence from accessibility disparity in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 220-235.
    4. Ali Soltani & Andrew Allan & Masoud Javadpoor & Jaswanth Lella, 2022. "Space Syntax in Analysing Bicycle Commuting Routes in Inner Metropolitan Adelaide," Sustainability, MDPI, vol. 14(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varvara Nikulina & David Simon & Henrik Ny & Henrikke Baumann, 2019. "Context-Adapted Urban Planning for Rapid Transitioning of Personal Mobility towards Sustainability: A Systematic Literature Review," Sustainability, MDPI, vol. 11(4), pages 1-37, February.
    2. Romanika Okraszewska & Aleksandra Romanowska & Marcin Wołek & Jacek Oskarbski & Krystian Birr & Kazimierz Jamroz, 2018. "Integration of a Multilevel Transport System Model into Sustainable Urban Mobility Planning," Sustainability, MDPI, vol. 10(2), pages 1-20, February.
    3. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    4. Todor Stojanovski, 2019. "Urban Form and Mobility Choices: Informing about Sustainable Travel Alternatives, Carbon Emissions and Energy Use from Transportation in Swedish Neighbourhoods," Sustainability, MDPI, vol. 11(2), pages 1-28, January.
    5. Hickman, Robin & Hall, Peter & Banister, David, 2013. "Planning more for sustainable mobility," Journal of Transport Geography, Elsevier, vol. 33(C), pages 210-219.
    6. Guzman, Luis A. & Peña, Javier & Carrasco, Juan Antonio, 2020. "Assessing the role of the built environment and sociodemographic characteristics on walking travel distances in Bogotá," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Awasthi, Anjali & Omrani, Hichem & Gerber, Philippe, 2018. "Investigating ideal-solution based multicriteria decision making techniques for sustainability evaluation of urban mobility projects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 247-259.
    8. Combs, Tabitha S., 2017. "Examining changes in travel patterns among lower wealth households after BRT investment in Bogotá, Colombia," Journal of Transport Geography, Elsevier, vol. 60(C), pages 11-20.
    9. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    10. José Renato Barandier & Milena Bodmer & Izabella Lentino, 2017. "Evidence of the impacts of the national housing programme on the accessibility of the low‐income population in Rio de Janeiro," Natural Resources Forum, Blackwell Publishing, vol. 41(2), pages 105-118, May.
    11. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    12. Bereitschaft, Bradley, 2020. "Gentrification and the evolution of commuting behavior within America's urban cores, 2000–2015," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    14. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    15. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    16. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    17. Vale, David S., 2013. "Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon," Journal of Transport Geography, Elsevier, vol. 32(C), pages 38-48.
    18. Zhao, Pengjun, 2013. "The implications of and institutional barriers to compact land development for transportation: Evidence from Bejing," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(3), pages 29-42.
    19. Papa, Enrica & Coppola, Pierluigi & Angiello, Gennaro & Carpentieri, Gerardo, 2017. "The learning process of accessibility instrument developers: Testing the tools in planning practice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 108-120.
    20. Isti Hidayati & Claudia Yamu & Wendy Tan, 2019. "The Emergence of Mobility Inequality in Greater Jakarta, Indonesia: A Socio-Spatial Analysis of Path Dependencies in Transport–Land Use Policies," Sustainability, MDPI, vol. 11(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:128:y:2019:i:c:p:59-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.