IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v109y2016icp54-62.html
   My bibliography  Save this article

Justifying the Gompertz curve of mortality via the generalized Polya process of shocks

Author

Listed:
  • Cha, Ji Hwan
  • Finkelstein, Maxim

Abstract

A new probabilistic model of aging that can be applied to organisms is suggested and analyzed. Organisms are subject to shocks that follow the generalized Polya process (GPP), which has been recently introduced and characterized in the literature. Distinct from the nonhomogeneous Poisson process that has been widely used in applications, the important feature of this process is the dependence of its future behavior on the number of previous events (shocks). The corresponding survival and the mortality rate functions are derived and analyzed. The general approach is used for justification of the Gompertz law of human mortality.

Suggested Citation

  • Cha, Ji Hwan & Finkelstein, Maxim, 2016. "Justifying the Gompertz curve of mortality via the generalized Polya process of shocks," Theoretical Population Biology, Elsevier, vol. 109(C), pages 54-62.
  • Handle: RePEc:eee:thpobi:v:109:y:2016:i:c:p:54-62
    DOI: 10.1016/j.tpb.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580916000149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2016.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, December.
    2. Trifon I. Missov & Maxim S. Finkelstein, 2011. "Admissible mixing distributions for a general class of mixture survival models with known asymptotics," MPIDR Working Papers WP-2011-004, Max Planck Institute for Demographic Research, Rostock, Germany.
    3. Maxim Finkelstein, 2012. "Discussing the Strehler-Mildvan model of mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(9), pages 191-206.
    4. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    5. Missov, Trifon I. & Finkelstein, Maxim, 2011. "Admissible mixing distributions for a general class of mixture survival models with known asymptotics," Theoretical Population Biology, Elsevier, vol. 80(1), pages 64-70.
    6. Ting Li & James Anderson, 2013. "Shaping human mortality patterns through intrinsic and extrinsic vitality processes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(12), pages 341-372.
    7. Y. Kebir, 1991. "On hazard rate processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 865-876, December.
    8. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, December.
    9. David Steinsaltz & Kenneth Wachter, 2006. "Understanding Mortality Rate Deceleration and Heterogeneity," Mathematical Population Studies, Taylor & Francis Journals, vol. 13(1), pages 19-37.
    10. Asfaw, Zeytu Gashaw & Lindqvist, Bo Henry, 2015. "Extending minimal repair models for repairable systems: A comparison of dynamic and heterogeneous extensions of a nonhomogeneous Poisson process," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 53-58.
    11. Maxim Finkelstein & Ji Hwan Cha, 2013. "Burn-in for Heterogeneous Populations," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 261-312, Springer.
    12. Li, Ting & Anderson, James J., 2009. "The vitality model: A way to understand population survival and demographic heterogeneity," Theoretical Population Biology, Elsevier, vol. 76(2), pages 118-131.
    13. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    14. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Germán Badía & Sophie Mercier & Carmen Sangüesa, 2019. "Extensions of the Generalized Pólya Process," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1057-1085, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    2. Cha, Ji Hwan & Finkelstein, Maxim, 2014. "Some notes on unobserved parameters (frailties) in reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 99-103.
    3. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    4. Elizabeth Wrigley-Field, 2014. "Mortality Deceleration and Mortality Selection: Three Unexpected Implications of a Simple Model," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 51-71, February.
    5. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    6. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    8. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    9. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    10. Maxim S. Finkelstein, 2011. "On ordered subpopulations and population mortality at advanced ages," MPIDR Working Papers WP-2011-022, Max Planck Institute for Demographic Research, Rostock, Germany.
    11. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    12. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    13. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    14. Maxim Finkelstein & Gregory Levitin & Oleg A Stepanov, 2019. "On operation termination for degrading systems with two types of failures," Journal of Risk and Reliability, , vol. 233(3), pages 419-426, June.
    15. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    17. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    19. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal abort rules for additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Gregory Levitin & Maxim Finkelstein, 2017. "A new stress–strength model for systems subject to stochastic shocks," Journal of Risk and Reliability, , vol. 231(2), pages 172-179, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:109:y:2016:i:c:p:54-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.