IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v192y2019ics095183201730100x.html
   My bibliography  Save this article

Optimal loading of elements in series systems exposed to external shocks

Author

Listed:
  • Levitin, Gregory
  • Finkelstein, Maxim

Abstract

This paper considers specific series systems exposed to external shocks and internal failures. The systems must complete a specified amount of work. The system elements can operate with different load levels that determine their performance and internal failure rates. The increase of the elements’ loading, on one hand increases their internal failure rate, but, on the other hand, it increases its performance level, which leads to reduction of the mission time. The optimal loading should achieve the balance between these two effects and provide the largest mission success probability. Two different types of series systems characterized by different definitions of time during which the elements are exposed to external shocks are considered. The cases when the elements are exposed to a common shock process and to different independent shock processes are also analyzed. Illustrative examples are presented.

Suggested Citation

  • Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:reensy:v:192:y:2019:i:c:s095183201730100x
    DOI: 10.1016/j.ress.2017.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201730100X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khac Tuan Huynh & Inma T. Castro & Anne Barros & Christophe Bérenguer, 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," Post-Print hal-00790729, HAL.
    2. Toshio Nakagawa, 2007. "Shock and Damage Models in Reliability Theory," Springer Series in Reliability Engineering, Springer, number 978-1-84628-442-7, September.
    3. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
    4. Gajpal, Yuvraj & Nourelfath, Mustapha, 2015. "Two efficient heuristics to solve the integrated load distribution and production planning problem," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 204-214.
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
    6. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, September.
    7. Levitin, Gregory & Amari, Suprasad V., 2009. "Optimal load distribution in series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 254-260.
    8. Chakravarthy, Srinivas R., 2012. "Maintenance of a deteriorating single server system with Markovian arrivals and random shocks," European Journal of Operational Research, Elsevier, vol. 222(3), pages 508-522.
    9. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    10. Maxim Finkelstein & Ji Hwan Cha, 2013. "Burn-in for Heterogeneous Populations," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 261-312, Springer.
    11. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    12. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2016. "Optimal task partition and state-dependent loading in heterogeneous two-element work sharing system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 97-108.
    13. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    14. Maxim Finkelstein & Ji Hwan Cha, 2013. "Shocks as Burn-in," Springer Series in Reliability Engineering, in: Stochastic Modeling for Reliability, edition 127, chapter 0, pages 313-361, Springer.
    15. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Optimal loading of system with random repair time," European Journal of Operational Research, Elsevier, vol. 247(1), pages 137-143.
    17. Gut, Allan & Hüsler, Jürg, 2005. "Realistic variation of shock models," Statistics & Probability Letters, Elsevier, vol. 74(2), pages 187-204, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Chen & Cui, Lirong, 2020. "Reliability analysis for balanced engine systems with m sectors by considering start-up probability," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal loading of repairable system with perfect product storage," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Loading policy minimizing cumulative unsupplied demand of production system with storage," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    2. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    3. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    4. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.
    5. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    6. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    7. Gregory Levitin & Maxim Finkelstein, 2017. "A new stress–strength model for systems subject to stochastic shocks," Journal of Risk and Reliability, , vol. 231(2), pages 172-179, April.
    8. Cha, Ji Hwan & Finkelstein, Maxim, 2018. "On information-based residual lifetime in survival models with delayed failures," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 209-216.
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal loading of repairable system with perfect product storage," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Mahmood Shafiee & Maxim Finkelstein, 2015. "A proactive group maintenance policy for continuously monitored deteriorating systems: Application to offshore wind turbines," Journal of Risk and Reliability, , vol. 229(5), pages 373-384, October.
    12. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    13. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Loading policy minimizing cumulative unsupplied demand of production system with storage," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    15. Eryilmaz, Serkan, 2017. "δ-shock model based on Polya process and its optimal replacement policy," European Journal of Operational Research, Elsevier, vol. 263(2), pages 690-697.
    16. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    18. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort and rescue for multistate systems operating under the Poisson process of shocks," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2017. "Bivariate preventive maintenance for repairable systems subject to random shocks," Journal of Risk and Reliability, , vol. 231(6), pages 643-653, December.
    20. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:192:y:2019:i:c:s095183201730100x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.