IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v214y2011i2p298-307.html
   My bibliography  Save this article

Two shock and wear systems under repair standing a finite number of shocks

Author

Listed:
  • Montoro-Cazorla, Delia
  • Pérez-Ocón, Rafael

Abstract

A shock and wear system standing a finite number of shocks and subject to two types of repairs is considered. The failure of the system can be due to wear or to a fatal shock. Associated to these failures there are two repair types: normal and severe. Repairs are as good as new. The shocks arrive following a Markovian arrival process, and the lifetime of the system follows a continuous phase-type distribution. The repair times follow different continuous phase-type distributions, depending on the type of failure. Under these assumptions, two systems are studied, depending on the finite number of shocks that the system can stand before a fatal failure that can be random or fixed. In the first case, the number of shocks is governed by a discrete phase-type distribution. After a finite (random or fixed) number of non-fatal shocks the system is repaired (severe repair). The repair due to wear is a normal repair. For these systems, general Markov models are constructed and the following elements are studied: the stationary probability vector; the transient rate of occurrence of failures; the renewal process associated to the repairs, including the distribution of the period between replacements and the number of non-fatal shocks in this period. Special cases of the model with random number of shocks are presented. An application illustrating the numerical calculations is given. The systems are studied in such a way that several particular cases can be deduced from the general ones straightaway. We apply the matrix-analytic methods for studying these models showing their versatility.

Suggested Citation

  • Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:298-307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711003602
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    2. Esther Frostig & Moshe Kenzin, 2007. "Preventive maintenance for inspected systems with additive subexponential shock magnitudes," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(4), pages 359-371, July.
    3. Chien, Yu-Hung & Sheu, Shey-Huei, 2006. "Extended optimal age-replacement policy with minimal repair of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 174(1), pages 169-181, October.
    4. Frostig, Esther & Kenzin, Moshe, 2009. "Availability of inspected systems subject to shocks - A matrix algorithmic approach," European Journal of Operational Research, Elsevier, vol. 193(1), pages 168-183, February.
    5. Biswas, Atanu & Sarkar, Jyotirmoy, 2000. "Availability of a system maintained through several imperfect repairs before a replacement or a perfect repair," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 105-114, November.
    6. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael & del Carmen Segovia, Maria, 2009. "Replacement policy in a system under shocks following a Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 497-502.
    7. Kenzin, Moshe & Frostig, Esther, 2009. "M out of n inspected systems subject to shocks in random environment," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1322-1330.
    8. Søren Asmussen, 2000. "Matrix‐analytic Models and their Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 193-226, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    2. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    3. Maxim Finkelstein & Ji Hwan Cha & Shyamal Ghosh, 2021. "Optimal inspection for missions with a possibility of abortion or switching to a lighter regime," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 722-740, October.
    4. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    5. Cha, Ji Hwan & Finkelstein, Maxim, 2018. "On information-based residual lifetime in survival models with delayed failures," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 209-216.
    6. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    7. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    8. Levitin, Gregory & Finkelstein, Maxim, 2019. "Optimal loading of elements in series systems exposed to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    9. Levitin, Gregory & Finkelstein, Maxim, 2017. "Optimal backup in heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 336-344.
    10. Gregory Levitin & Maxim Finkelstein, 2017. "A new stress–strength model for systems subject to stochastic shocks," Journal of Risk and Reliability, , vol. 231(2), pages 172-179, April.
    11. Hyunju Lee & Ji Hwan Cha, 2021. "On a multivariate IFR and positively dependent lifetime model induced by multiple shot-noise processes," Statistical Papers, Springer, vol. 62(2), pages 561-590, April.
    12. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    13. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A redundant n-system under shocks and repairs following Markovian arrival processes," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 69-75.
    14. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    15. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.
    16. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    17. Shey-Huei Sheu & Tzu-Hsin Liu & Zhe-George Zhang & Hsin-Nan Tsai & Jung-Chih Chen, 2016. "Optimal two-threshold replacement policy in a cumulative damage model," Annals of Operations Research, Springer, vol. 244(1), pages 23-47, September.
    18. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    19. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    20. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    2. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2012. "A shock and wear system under environmental conditions subject to internal failures, repair, and replacement," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 55-61.
    3. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    4. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2015. "A shock and wear model with dependence between the interarrival failures," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 339-352.
    5. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    6. J-A Chen & Y-H Chien, 2007. "Optimal age-replacement policy for renewing warranted products," Journal of Risk and Reliability, , vol. 221(4), pages 229-237, December.
    7. Lim, J.H. & Qu, Jian & Zuo, Ming J., 2016. "Age replacement policy based on imperfect repair with random probability," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 24-33.
    8. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.
    9. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    10. Cha, Ji Hwan, 2011. "Comparison of combined stochastic risk processes and its applications," European Journal of Operational Research, Elsevier, vol. 215(2), pages 404-410, December.
    11. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    12. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal mission duration for systems subject to shocks and internal failures," Journal of Risk and Reliability, , vol. 232(1), pages 82-91, February.
    13. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    14. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures: A Matrix-Analytic Approach," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
    15. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "On some properties of shock processes in a ‘natural’ scale," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 104-110.
    16. Chien, Yu-Hung, 2008. "A general age-replacement model with minimal repair under renewing free-replacement warranty," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1046-1058, May.
    17. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    18. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    19. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    20. Maxim Finkelstein & Gregory Levitin, 2020. "On missions’ quality of performance for systems with partially or completely observable degradation," Journal of Risk and Reliability, , vol. 234(5), pages 676-685, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:298-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.