IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v81y2025ics0160791x25000624.html
   My bibliography  Save this article

Wave energy technology development in Ireland: Employing the triple helix model of innovation for pragmatic policy interventions

Author

Listed:
  • Barry, C.A.
  • Ringwood, J.V.

Abstract

Irish wave energy technology holds significant economic potential and could be developed to establish an indigenous industry that addresses the global need for a diverse, robust, and reliable renewable energy system comprising a mix of modalities. While wave energy technology has not yet reached commercial viability, it could achieve it with adequate support facilitated by targeted public policy. It is clear that divergent stakeholder perspectives need to be considered when formulating policies, allowing for alternatives to be found, assumptions to be tested, and trust in government actions to be built. This is particularly pertinent for emerging renewable energy technologies such as wave energy, due to the interdependency between developers, policymakers, and researchers at early technology readiness levels. This study applies the triple helix innovation methodology to the wave energy technology sector within an Irish context, providing a framework within which often disparate stakeholder perspectives can be gathered and analysed, and consensus can be found. This consensus can influence pragmatic policy developments for innovation. The study also provides empirical evidence of the need for supportive policy development for wave energy technology in Ireland.

Suggested Citation

  • Barry, C.A. & Ringwood, J.V., 2025. "Wave energy technology development in Ireland: Employing the triple helix model of innovation for pragmatic policy interventions," Technology in Society, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:teinso:v:81:y:2025:i:c:s0160791x25000624
    DOI: 10.1016/j.techsoc.2025.102872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X25000624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2025.102872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    3. Loet Leydesdorff & Henry Etzkowitz, 1996. "Emergence of a Triple Helix of university—industry—government relations," Science and Public Policy, Oxford University Press, vol. 23(5), pages 279-286, October.
    4. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    5. Markku Anttonen & Minna Lammi & Juri Mykkänen & Petteri Repo, 2018. "Circular Economy in the Triple Helix of Innovation Systems," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
    6. Loet Leydesdorff, 2006. "The Knowledge-Based Economy and the Triple Helix Model," Chapters, in: Wilfred Dolfsma & Luc Soete (ed.), Understanding the Dynamics of a Knowledge Economy, chapter 2, Edward Elgar Publishing.
    7. Alessandro Muscio & Felice Simonelli & Hien Vu, 2023. "Bridging the valley of death in the EU renewable energy sector: Toward a new energy policy," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4620-4635, November.
    8. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    9. Amélie Têtu & Julia Fernandez Chozas, 2021. "A Proposed Guidance for the Economic Assessment of Wave Energy Converters at Early Development Stages," Energies, MDPI, vol. 14(15), pages 1-14, August.
    10. Klitkou, Antje & Godoe, Helge, 2013. "The Norwegian PV manufacturing industry in a Triple Helix perspective," Energy Policy, Elsevier, vol. 61(C), pages 1586-1594.
    11. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Jin, Siya & Greaves, Deborah, 2021. "Wave energy in the UK: Status review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Hettinga, Sanne & Nijkamp, Peter & Scholten, Henk, 2018. "A multi-stakeholder decision support system for local neighbourhood energy planning," Energy Policy, Elsevier, vol. 116(C), pages 277-288.
    14. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2009. "Renewable energy resources and technologies applicable to Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1975-1984, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    2. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Muhammad Waqas Ayub & Ameer Hamza & George A. Aggidis & Xiandong Ma, 2023. "A Review of Power Co-Generation Technologies from Hybrid Offshore Wind and Wave Energy," Energies, MDPI, vol. 16(1), pages 1-21, January.
    4. Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    5. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    6. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Raúl Cascajo & Rafael Molina & Luís Pérez-Rojas, 2022. "Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology," Energies, MDPI, vol. 15(7), pages 1-25, April.
    8. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    9. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    10. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    11. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    12. Petteri Repo & Kaisa Matschoss, 2019. "Social Innovation for Sustainability Challenges," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    13. A. Cesar Y. Acevedo Arenas & Yecid A. Muñoz Maldonado & Johann F. Petit Suárez & Duban H. Morales Sánchez & Daniel F. Ramírez Contreras, 2024. "Towards a Standardized LCOE Calculation for Informed Decision-Making in Energy Policy and Investment: Application to the Colombian Context," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 523-541, November.
    14. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    15. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    16. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    17. Buenau, K.E. & Sather, N.K. & Arkema, K.K., 2025. "A marine energy and ecosystem service framework for coastal communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    18. Thomas Kelly & Thomas Dooley & John Campbell & John V. Ringwood, 2013. "Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC), V-Shaped Floating Wave Energy Converter," Energies, MDPI, vol. 6(8), pages 1-33, August.
    19. José Carlos Ugaz Peña & Christian Luis Medina Rodríguez & Gustavo O. Guarniz Avalos, 2023. "Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    20. Li, Yin & Arora, Sanjay & Youtie, Jan & Shapira, Philip, 2018. "Using web mining to explore Triple Helix influences on growth in small and mid-size firms," Technovation, Elsevier, vol. 76, pages 3-14.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:81:y:2025:i:c:s0160791x25000624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.