IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The compound Pascal model with dividends paid under random interest

  • Geng, Xianmin
  • Wang, Ying
Registered author(s):

    Consider a discrete time risk model under random interest based on the compound Pascal model. The insurer pays a dividend of 1 with a probability q0 when the surplus is greater than or equal to a non-negative b. In addition, the effect of interest is considered in our model. We derive recursion formulas for the ruin probability, and the joint distribution of the surplus before ruin and the deficit at ruin. Further, we give the generalized Lundberg inequalities for the ruin probability when q0=1.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001307
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 7 ()
    Pages: 1331-1336

    as
    in new window

    Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1331-1336
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    2. Tan, Jiyang & Yang, Xiangqun, 2006. "The compound binomial model with randomized decisions on paying dividends," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 1-18, August.
    3. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    4. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    5. Siegl, Thomas & Tichy, Robert F., 1999. "A process with stochastic claim frequency and a linear dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 51-65, March.
    6. Li, Shuanming & Garrido, Jose, 2004. "On a class of renewal risk models with a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 691-701, December.
    7. Frostig, Esther, 2005. "The expected time to ruin in a risk process with constant barrier via martingales," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 216-228, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1331-1336. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.